CodeForces19D:Points(线段树+set(动态查找每个点右上方的点))
Pete and Bob invented a new interesting game. Bob takes a sheet of paper and locates a Cartesian coordinate system on it as follows: point (0, 0) is located in the bottom-left corner, Ox axis is directed right, Oy axis is directed up. Pete gives Bob requests of three types:
- add x y — on the sheet of paper Bob marks a point with coordinates (x, y). For each request of this type it's guaranteed that point (x, y) is not yet marked on Bob's sheet at the time of the request.
- remove x y — on the sheet of paper Bob erases the previously marked point with coordinates (x, y). For each request of this type it's guaranteed that point (x, y) is already marked on Bob's sheet at the time of the request.
- find x y — on the sheet of paper Bob finds all the marked points, lying strictly above and strictly to the right of point (x, y). Among these points Bob chooses the leftmost one, if it is not unique, he chooses the bottommost one, and gives its coordinates to Pete.
Bob managed to answer the requests, when they were 10, 100 or 1000, but when their amount grew up to 2·105, Bob failed to cope. Now he needs a program that will answer all Pete's requests. Help Bob, please!
Input
The first input line contains number n (1 ≤ n ≤ 2·105) — amount of requests. Then there follow n lines — descriptions of the requests. add x y describes the request to add a point, remove x y — the request to erase a point, find x y — the request to find the bottom-left point. All the coordinates in the input file are non-negative and don't exceed 109.
Output
For each request of type find x y output in a separate line the answer to it — coordinates of the bottommost among the leftmost marked points, lying strictly above and to the right of point (x, y). If there are no points strictly above and to the right of point (x, y), output -1.
Example
7
add 1 1
add 3 4
find 0 0
remove 1 1
find 0 0
add 1 1
find 0 0
1 1
3 4
1 1
13
add 5 5
add 5 6
add 5 7
add 6 5
add 6 6
add 6 7
add 7 5
add 7 6
add 7 7
find 6 6
remove 7 7
find 6 6
find 4 4
7 7
-1
5 5
题意:给定二维平面,有Q个操作。对于每个操作,输入Opt,X,Y。
如果Opt==“add”,则加(X,Y)。
如果Opt==“remove”,则删去(X,Y)
否则,查找(X,Y)右上方最靠左的点,若果有多个,取Y最小,输出坐标。
思路:离散化,对X轴建立线段树,树节点保存子树的最大Y坐标值Max。利用线段树查找的思想相当于是分治吧,即,在查找(X,Y)右上方点时,只要找到X的右边部分的线段树里第一个Max>Y,得到X’,然后set二分得到Y‘就ok。
(为了统一,我新习惯把单点也看成区间。)
#include<set>
#include<cstdio>
#include<cstdlib>
#include<iostream>
#include<algorithm>
using namespace std;
const int maxn=;
int x[maxn],y[maxn],opt[maxn],a[maxn];
char chr[]; set<int>s[maxn];
void read(int &res){
char c=getchar(); for(;c>''||c<'';c=getchar());
for(res=;c>=''&&c<='';c=getchar()) res=(res<<)+(res<<)+c-'';
}
int Max[maxn<<],ans,ht;
struct segment_tree
{
void add(int Now,int L,int R,int l,int r,int Y)
{
if(l<=L&&r>=R){
s[l].insert(Y);
Max[Now]=*(s[l].rbegin());
return ;
}
int Mid=(L+R)>>;
if(l<=Mid) add(Now<<,L,Mid,l,r,Y);
if(r>Mid) add(Now<<|,Mid+,R,l,r,Y);
Max[Now]=max(Max[Now<<],Max[Now<<|]);
}
void del(int Now,int L,int R,int l,int r,int Y)
{
if(l<=L&&r>=R){
s[l].erase(Y);
if(s[l].empty()) Max[Now]=-;
else Max[Now]=*(s[l].rbegin());
return ;
}
int Mid=(L+R)>>;
if(l<=Mid) del(Now<<,L,Mid,l,r,Y);
if(r>Mid) del(Now<<|,Mid+,R,l,r,Y);
Max[Now]=max(Max[Now<<],Max[Now<<|]);
}
void find(int Now,int L,int R,int l,int r,int Y)
{
if(Max[Now]<=Y) return ;
if(l<=L&&r>=R){
if(L==R){
ans=L; ht=*(s[L].upper_bound(Y));
return ;
}
int Mid=(L+R)>>;
find(Now<<,L,Mid,l,r,Y);
if(ans==-) find(Now<<|,Mid+,R,l,r,Y);
return ;
}
int Mid=(L+R)>>;
if(l<=Mid) find(Now<<,L,Mid,l,r,Y);
if(ans==-&&r>Mid) find(Now<<|,Mid+,R,l,r,Y);
}
}Tree;
int main()
{
int N,M;
read(N);
for(int i=;i<=N;i++){
scanf("%s",chr); read(x[i]); read(y[i]);
if(chr[]=='r') opt[i]=-;
if(chr[]=='a') opt[i]=;
if(chr[]=='f') opt[i]=;
a[i]=x[i];
}
sort(a+,a+N+);
M=unique(a+,a+N+)-(a+);
for(int i=;i<=N;i++){
int X=lower_bound(a+,a+M+,x[i])-a;
if(opt[i]==) Tree.add(,,M,X,X,y[i]);
else if(opt[i]==-) Tree.del(,,M,X,X,y[i]);
else{
ans=ht=-;
Tree.find(,,M,X+,M,y[i]);
if(ans==-) printf("-1\n");
else printf("%d %d\n",a[ans],ht);
}
}
return ;
}
CodeForces19D:Points(线段树+set(动态查找每个点右上方的点))的更多相关文章
- [Codeforces19D]Points 线段树
大致题意: 给出n个询问,每次询问有三种: 1.往平面上加一个点 2.删除平面上的一个点 3.给出一个点p,查询平面上某点q,使得q.x>p.x且q.y>p.y,输出x轴坐标最小的q,若有 ...
- 【xsy3423】党² 线段树+李超线段树or动态半平面交
本来并不打算出原创题的,此题集CF542A和sk的灵感而成,算个半原创吧. 题目大意: 给定有$n$个元素的集合$P$,其中第$i$个元素中包含$L_i,R_i,V_i$三个值. 给定另一个有$n$个 ...
- HDU 5877 2016大连网络赛 Weak Pair(树状数组,线段树,动态开点,启发式合并,可持久化线段树)
Weak Pair Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 262144/262144 K (Java/Others) Tota ...
- CodeForces 19D Points (线段树+set)
D. Points time limit per test 2 seconds memory limit per test 256 megabytes input standard input out ...
- Codeforces 1140F Extending Set of Points 线段树 + 按秩合并并查集 (看题解)
Extending Set of Points 我们能发现, 如果把x轴y轴看成点, 那么答案就是在各个连通块里面的x轴的个数乘以y轴的个数之和. 然后就变成了一个并查集的问题, 但是这个题目里面有撤 ...
- BZOJ.4553.[HEOI2016&TJOI2016]序列(DP 树状数组套线段树/二维线段树(MLE) 动态开点)
题目链接:BZOJ 洛谷 \(O(n^2)\)DP很好写,对于当前的i从之前满足条件的j中选一个最大值,\(dp[i]=d[j]+1\) for(int j=1; j<i; ++j) if(a[ ...
- [hdu4347]The Closest M Points(线段树形式kd-tree)
解题关键:kdtree模板题,距离某点最近的m个点. #include<cstdio> #include<cstring> #include<algorithm> ...
- bzoj2212 Tree Rotations 线段树合并+动态开点
题目传送门 思路: 区间合并线段树的题,第一次写,对于一颗子树,无论这个子树怎么交换,都不会对其他子树的逆序对造成影响,所以就直接算逆序对就好. 注意叶子节点是1到n的全排列,所以每个权值都只会出现1 ...
- kb-07线段树-12--二分查找区间边界
/* hdu4614 本题刚开始想能不能记录该区间最前面开始的点,最后面的点,区间空的数量:但是病不行 然后线段树的本质是区间操作,所以!这题主要就是区间的空的全放满,只要定出区间的边界就好办了: 这 ...
随机推荐
- hdu - 3836 Equivalent Sets(强连通)
http://acm.hdu.edu.cn/showproblem.php?pid=3836 判断至少需要加几条边才能使图变成强连通 把图缩点之后统计入度为0的点和出度为0的点,然后两者中的最大值就是 ...
- 某考试 T1 sigfib
设 g(x) = f(x) * x ,多项式 A = Σ g(i) * x^i , 多项式 B = Σ f(i) * x^i. 首先,g(x) = g(x-1) + g(x-2) + f(x-1) ...
- MySQL的内存表(转)
说明:MySQL内存表可以提升一些临时业务的查询,比如做Session的共享,一些类似缓存的数据等. “内存表”顾名思义创建在内存中的表,真是这样吗?其实不然,MySQL的内存表,表结构创建在磁盘上, ...
- pnputil
http://mb.yidianzixun.com/article/0FYSZgnB?s=mb&appid=mibrowser C:\Users\Administrator>pnputi ...
- 深入GCD(五):资源竞争
概述我将分四步来带大家研究研究程序的并发计算.第一步是基本的串行程序,然后使用GCD把它并行计算化.如果你想顺着步骤来尝试这些程序的话,可以下载源码.注意,别运行imagegcd2.m,这是个反面教材 ...
- python实现网速控制,限制上传下载速度
对于python的web,比如flask使用的werkzeug,首先找到wsgi的请求和响应的代码,使用算法实现大文件的小速率上传和下载 考虑python实现socket限流 关于限速的讨论:http ...
- Linux网络编程简单示例
linux 网络编程是通过socket(套接字)接口实现,Socket是一种文件描述符,socket起源于UNIX,在Unix一切皆文件哲学的思想下,socket是一种"打开—读/写—关闭& ...
- 仿MIUI音量变化环形进度条实现
Android中使用环形进度条的业务场景事实上蛮多的,比方下载文件的时候使用环形进度条.会给用户眼前一亮的感觉:再比方我大爱的MIUI系统,它的音量进度条就是使用环形进度条,尽显小米"为发烧 ...
- JS判断访问设备(userAgent)加载不同页面 JS判断客户端操作系统类型(platform)
//平台.设备和操作系统 var system ={ win : false, mac : false, xll : false }; //检测平台 var p = navigator.platfor ...
- 【iOS开源码】(1):CCLHTTPServer
我从没有见过比 CCLHTTPServer 更简单的 iOS HTTP server了.你甚至不用创建不论什么子类就可以使用它.对于大部分任务,这个小巧但强悍的server能够满足你的须要. 它简单到 ...