1、softmax

函数 Softmax(x) 也是一个 non-linearity, 但它的特殊之处在于它通常是网络中一次操作. 这是因为它接受了一个实数向量并返回一个概率分布.其定义如下. 定义 x 是一个实数的向量(正数或负数都无所谓, 没有限制). 然后, 第i个 Softmax(x) 的组成是
exp(xi)∑jexp(xj)
exp⁡(xi)∑jexp⁡(xj)

输出是一个概率分布: 每个元素都是非负的, 并且所有元素的总和都是1.
2、log_softmax

在softmax的结果上再做多一次log运算

While mathematically equivalent to log(softmax(x)), doing these two
operations separately is slower, and numerically unstable. This function
uses an alternative formulation to compute the output and gradient correctly.
1
2
3
虽然在数学上等价于log(softmax(x)),但做这两个

单独操作速度较慢,数值上也不稳定。这个函数

使用另一种公式来正确计算输出和梯度。
1
2
3
4
5
测试:

import torch
import torch.autograd as autograd
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import numpy as np

data=autograd.Variable(torch.FloatTensor([1.0,2.0,3.0]))
log_softmax=F.log_softmax(data,dim=0)
print(log_softmax)

softmax=F.softmax(data,dim=0)
print(softmax)

np_softmax=softmax.data.numpy()
log_np_softmax=np.log(np_softmax)
print(log_np_softmax)

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
3、nn.CrossEntropyLoss() 与 NLLLoss()

NLLLoss 的 输入 是一个对数概率向量和一个目标标签. 它不会为我们计算对数概率. 适合网络的最后一层是log_softmax. 损失函数 nn.CrossEntropyLoss() 与 NLLLoss() 相同, 唯一的不同是它为我们去做 softmax.

4、log似然代价函数

C=−∑kyklogak
C=−∑kyklogak

其中,akak表示第k个神经元的输出值;ykyk表示第k个神经元对应的真实值,取值为0或1。实际上,做分类时候,只有一个ykyk为1,其他均为0,最终结果是C=−yklogakC=−yklogak(akak对应着正确的那一个分类,log默认是e为底,ak∈[0,1]ak∈[0,1],当akak最大时候,C=0),损失为0.
---------------------
作者:HawardScut
来源:CSDN
原文:https://blog.csdn.net/hao5335156/article/details/80607732
版权声明:本文为博主原创文章,转载请附上博文链接!

PyTorch学习笔记——softmax和log_softmax的区别、CrossEntropyLoss() 与 NLLLoss() 的区别、log似然代价函数的更多相关文章

  1. Pytorch之CrossEntropyLoss() 与 NLLLoss() 的区别

    (三)PyTorch学习笔记——softmax和log_softmax的区别.CrossEntropyLoss() 与 NLLLoss() 的区别.log似然代价函数 pytorch loss fun ...

  2. 【转载】softmax的log似然代价函数(求导过程)

    全文转载自:softmax的log似然代价函数(公式求导) 在人工神经网络(ANN)中,Softmax通常被用作输出层的激活函数.这不仅是因为它的效果好,而且因为它使得ANN的输出值更易于理解.同时, ...

  3. 【深度学习】Pytorch 学习笔记

    目录 Pytorch Leture 05: Linear Rregression in the Pytorch Way Logistic Regression 逻辑回归 - 二分类 Lecture07 ...

  4. [深度学习] pytorch学习笔记(2)(梯度、梯度下降、凸函数、鞍点、激活函数、Loss函数、交叉熵、Mnist分类实现、GPU)

    一.梯度 导数是对某个自变量求导,得到一个标量. 偏微分是在多元函数中对某一个自变量求偏导(将其他自变量看成常数). 梯度指对所有自变量分别求偏导,然后组合成一个向量,所以梯度是向量,有方向和大小. ...

  5. PyTorch学习笔记及问题处理

    1.torch.nn.state_dict(): 返回一个字典,保存着module的所有状态(state). parameters和persistent_buffers都会包含在字典中,字典的key就 ...

  6. PyTorch学习笔记6--案例2:PyTorch神经网络(MNIST CNN)

    上一节中,我们使用autograd的包来定义模型并求导.本节中,我们将使用torch.nn包来构建神经网络. 一个nn.Module包含各个层和一个forward(input)方法,该方法返回outp ...

  7. Pytorch学习笔记(二)---- 神经网络搭建

    记录如何用Pytorch搭建LeNet-5,大体步骤包括:网络的搭建->前向传播->定义Loss和Optimizer->训练 # -*- coding: utf-8 -*- # Al ...

  8. Pytorch学习笔记(一)---- 基础语法

    书上内容太多太杂,看完容易忘记,特此记录方便日后查看,所有基础语法以代码形式呈现,代码和注释均来源与书本和案例的整理. # -*- coding: utf-8 -*- # All codes and ...

  9. 【pytorch】pytorch学习笔记(一)

    原文地址:https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html 什么是pytorch? pytorch是一个基于p ...

随机推荐

  1. 手把手VirtualBox虚拟机下安装rhel6.4 linux位系统详细文档

    使用Virtual Box,感觉跟Vmware差不多,我的本子的系统是win7 64位. 下面演示安装的是在VirtualBox里安装rhel 6.4 linux 32位系统.32位系统安装和 64位 ...

  2. IJ:IJ来了2-调试开发环境

    ylbtech-IJ:IJ来了2 1.返回顶部 1. 2. 3. 4. 2. 配置SVN返回顶部 1.SVN安装时,要选上command line client tools 2. 3.   4. 3. ...

  3. Python.h:No such file or directory

    出现No such file or directory的错误,有两种情况,一种是真的没有Python.h这个文件,一种是Python的版本不对, 可以进入/usr/include/文件夹下的Pytho ...

  4. git合并相关问题(copy)

    [说明:资料来自http://gitbook.liuhui998.com/3_3.html] 一个Git仓库可以维护很多开发分支.现在我们来创建一个新的叫”experimental”的分支: $ gi ...

  5. mybatis 基础详解

    转 https://www.cnblogs.com/Mr-Kenson/p/8124680.html mybatis 是一个开源的 用于对数据库操作的框架, 读者基本都大体了解其基本功能, 我就不多解 ...

  6. ubuntu下7z文件的解压方法(转载)

    转自:http://qtlinux.blog.51cto.com/3052744/569406 打开终端,键入以下命令: apt-get install p7zip-full 控制台会打出以下信息: ...

  7. 51nod 1220 约数之和【莫比乌斯反演+杜教筛】

    首先由这样一个式子:\( d(ij)=\sum_{p|i}\sum_{q|j}[gcd(p,q)==1]\frac{pj}{q} \)大概感性证明一下吧我不会证 然后开始推: \[ \sum_{i=1 ...

  8. 洛谷P4891 序列

    传送门 这题纯暴力竟然能过…… //minamoto #include<cstdio> #include<iostream> #define mul(a,b) (1ll*a*b ...

  9. Java 反射机制详解(上)

    一.什么是反射 JAVA反射机制是在运行状态中,对于任意一个类,都能够知道这个类的所有属性和方法:对于任意一个对象,都能够调用它的任意方法和属性:这种动态获取信息以及动态调用对象方法的功能称为java ...

  10. 数学 SCU 4436 Easy Math

    题目传送门 /* 数学题:当有一个数开根号后是无理数,则No */ #include <cstdio> #include <algorithm> #include <cs ...