Classic Quotation

Problem Description
When online chatting, we can save what somebody said to form his ''Classic Quotation''. Little Q does this, too. What's more? He even changes the original words. Formally, we can assume what somebody said as a string S whose length is n. He will choose a continuous substring of S(or choose nothing), and remove it, then merge the remain parts into a complete one without changing order, marked as S′. For example, he might remove ''not'' from the string ''I am not SB.'', so that the new string S′ will be ''I am SB.'', which makes it funnier.

After doing lots of such things, Little Q finds out that string T occurs as a continuous substring of S′ very often.

Now given strings S and T, Little Q has k questions. Each question is, given L and R, Little Q will remove a substring so that the remain parts are S[1..i] and S[j..n], what is the expected times that T occurs as a continuous substring of S′ if he choose every possible pair of (i,j)(1≤i≤L,R≤j≤n) equiprobably? Your task is to find the answer E, and report E×L×(n−R+1) to him.

Note : When counting occurrences, T can overlap with each other.

 
Input
The first line of the input contains an integer C(1≤C≤15), denoting the number of test cases.

In each test case, there are 3 integers n,m,k(1≤n≤50000,1≤m≤100,1≤k≤50000) in the first line, denoting the length of S, the length of T and the number of questions.

In the next line, there is a string S consists of n lower-case English letters.

Then in the next line, there is a string T consists of m lower-case English letters.

In the following k lines, there are 2 integers L,R(1≤L<R≤n) in each line, denoting a question.

 
Output
For each question, print a single line containing an integer, denoting the answer.
 
Sample Input
1
8 5 4
iamnotsb
iamsb
4 7
3 7
3 8
2 7
 
Sample Output
1
1
0
0
 

题意:

  给两个字符串只包含小写字母,长度分别为n,m

  k个询问,每次询问给出一个L,R

  任意的 ( i , j ) ( 1 ≤ i ≤ L , R ≤ j ≤ n ) 删除S串范围(i+1,j-1)内的字符,求出T串在新串内出现的次数总和

题解:

  我还是照搬官方题解吧

  

#include<bits/stdc++.h>
using namespace std;
#pragma comment(linker, "/STACK:102400000,102400000")
#define ls i<<1
#define rs ls | 1
#define mid ((ll+rr)>>1)
#define pii pair<int,int>
#define MP make_pair
typedef long long LL;
typedef unsigned long long ULL;
const long long INF = 1e18+1LL;
const double pi = acos(-1.0);
const int N = 6e4+, M = 2e2+,inf = 2e9; int zfail[N],ffail[N];
LL dp[N][M],f[N][M],sumdp[N][M],sumf[N][M],dp2[N][M],f2[N][M];
char a[N],b[N];
int n,m,k,T;
LL solve(int ll,int rr) {
LL ret = ;
ret += 1LL * sumdp[ll][m] * (n - rr + ) + 1LL * sumf[rr][] * (ll);
for(int i = ; i < m; ++i) {
ret += 1LL*dp2[ll][i] * f2[rr][i+];
}
return ret;
}
void init() {
for(int j = ; j <= m+; ++j) zfail[j] = ,ffail[j] = m+;
for(int i = ; i <= n+; ++i)
for(int j = ; j <= m+; ++j)
dp[i][j] = ,f[i][j] = ,sumdp[i][j] = ,sumf[i][j] = ;
int j = ;
for(int i = ; i <= m; ++i) {
while(j&&b[j+]!=b[i]) j = zfail[j];
if(b[j+] == b[i]) j++;
zfail[i] = j;
}
j = m+;
for(int i = m-; i >= ; --i) {
while(j<=m&&b[j-]!=b[i]) j = ffail[j];
if(b[j-] == b[i]) j--;
ffail[i] = j;
}
j = ;
for(int i = ; i <= n; ++i) {
while(j&&a[i]!=b[j+]) j = zfail[j];
if(b[j+] == a[i]) j++;
dp[i][j] += ;
}
j = m+;
for(int i = n; i >= ; --i) {
while(j<=m&&b[j-]!=a[i]) j = ffail[j];
if(b[j-] == a[i]) j--;
f[i][j] += ;
} for(int i = ; i <= n; ++i) {
for(int j = ; j <= m; ++j) {
dp[i][j] += dp[i-][j];
sumdp[i][j] += sumdp[i-][j]+dp[i][j];
}
}
for(int i = n; i >= ; --i) {
for(int j = m; j >= ; --j) {
f[i][j] += f[i+][j];
sumf[i][j] += sumf[i+][j]+f[i][j];
}
}
} void init2() {
for(int i = ; i <= n+; ++i)
for(int j = ; j <= m+; ++j)
dp2[i][j] = ,f2[i][j] = ;
for(int i = ; i <= n+; ++i)
dp2[i][] = ,f2[i][m+] = ; for(int i = ; i <= n; ++i) {
for(int j = ; j <= m; ++j) {
if(a[i] == b[j] && dp2[i-][j-])
dp2[i][j] = ;
}
}
for(int i = ; i <= n; ++i) {
for(int j = ; j <= m; ++j) {
dp2[i][j] += dp2[i-][j];
}
}
for(int i = n; i >= ; --i) {
for(int j = m; j >= ; --j) {
if(a[i] == b[j] && f2[i+][j+])
f2[i][j] = ;
}
}
for(int i = n; i >= ; --i) {
for(int j = m; j >= ; --j) {
f2[i][j] += f2[i+][j];
}
}
} int main() {
scanf("%d",&T);
while(T--) {
scanf("%d%d%d%s%s",&n,&m,&k,a+,b+);
init();
init2();
while(k--) {
int L,R;
scanf("%d%d",&L,&R);
printf("%lld\n",solve(L,R));
}
}
return ;
}

HDU 6068 Classic Quotation KMP+DP的更多相关文章

  1. HDU 6068 - Classic Quotation | 2017 Multi-University Training Contest 4

    /* HDU 6068 - Classic Quotation [ KMP,DP ] | 2017 Multi-University Training Contest 4 题意: 给出两个字符串 S[ ...

  2. hdu 6068 Classic Quotation

    题 QAQ http://acm.hdu.edu.cn/showproblem.php?pid=6068 2017 Multi-University Training Contest - Team 4 ...

  3. HDU 6153 A Secret ( KMP&&DP || 拓展KMP )

    题意 : 给出两个字符串,现在需要求一个和sum,考虑第二个字符串的所有后缀,每个后缀对于这个sum的贡献是这个后缀在第一个字符串出现的次数*后缀的长度,最后输出的答案应当是 sum % 1e9+7 ...

  4. HDU 5763 Another Meaning KMP+DP

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5763 Another Meaning Time Limit: 2000/1000 MS (Java/ ...

  5. hdu 6068--Classic Quotation(kmp+DP)

    题目链接 Problem Description When online chatting, we can save what somebody said to form his ''Classic ...

  6. [kmp+dp] hdu 4628 Pieces

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4622 Reincarnation Time Limit: 6000/3000 MS (Java/Ot ...

  7. [HDOJ5763]Another Meaning(KMP, DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5763 题意:给定两个字符串a和b,其中a中的字符串如果含有子串b,那么那部分可以被替换成*.问有多少种 ...

  8. HDU 1003 Max Sum --- 经典DP

    HDU 1003    相关链接   HDU 1231题解 题目大意:给定序列个数n及n个数,求该序列的最大连续子序列的和,要求输出最大连续子序列的和以及子序列的首位位置 解题思路:经典DP,可以定义 ...

  9. POJ 3336 Count the string (KMP+DP,好题)

    参考连接: KMP+DP: http://www.cnblogs.com/yuelingzhi/archive/2011/08/03/2126346.html 另外给出一个没用dp做的:http:// ...

随机推荐

  1. 2017年 湘潭邀请赛(湖南)or 江苏省赛

    这套题是叉姐出的,好难啊,先扫一遍好像没有会做的题了,仔细一想好像D最容易哎 Super Resolution Accepted : 112   Submit : 178 Time Limit : 1 ...

  2. 最短路POJ 1062 昂贵的聘礼

    C - 昂贵的聘礼 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit St ...

  3. 自动化运维之shell通配符,转义符,和元字符(二)

    1 shell通配符 通配符看起来有点象正则表达式语句,但是它与正则表达式不同的,不能相互混淆.把通配符理解为shell特殊代号字符就可. 二.shell元字符 shell除了有通配符之外,由shel ...

  4. 【Luogu】P2331最大子矩阵(DP)

    题目链接 这题的状态转移方程真是粗鄙. f[i][j][k]表示前i行用了j个矩阵状态为k的时候的最大值. k=0:两列都不选. k=1:取左弃右. k=2:选右弃左. k=3:左右都选,但分属于两个 ...

  5. BZOJ1924 [Sdoi2010]所驼门王的宝藏 【建图 + tarjan】

    题目 输入格式 第一行给出三个正整数 N, R, C. 以下 N 行,每行给出一扇传送门的信息,包含三个正整数xi, yi, Ti,表示该传送门设在位于第 xi行第yi列的藏宝宫室,类型为 Ti.Ti ...

  6. java.util.ResourceBundle 用法小介

    java中读取配置文件的信息可以采用properties这个类,但是当遇到国际化问题的时候还是不好解决,因而还是最好使用 ResourceBundle这个类,其实ResourceBundle本质上和P ...

  7. readonly和disabled的异同

    好久木有写博客了,今来逛逛 话说今天搞form表单的时候,主管让俺把手机号设成只读的.当时我就...咳咳,然后我就问了下万能的百度君,果断还是有解决方法的嘛,那么,今就谈谈readonly和disab ...

  8. HTML网页滚动加载--mark一下

    console控制台: >: function stroll(){ window.scrollTo(, document.body.scrollHeight); }; >: window. ...

  9. 将数字转换成Excel表头格式的字母序号

    /**     * 从0开始算起,0-25转A-Z     * @param num     * @return  Character.valueOf((char)((num-1)+65))+&quo ...

  10. Python种使用Excel

    今天用到Excel的相关操作,看了一些资料,借此为自己保存一些用法. 参考资料: python excel 的相关操作 python操作excel之xlrd python操作Excel读写--使用xl ...