#34. 多项式乘法

统计

这是一道模板题。

给你两个多项式,请输出乘起来后的多项式。

输入格式

第一行两个整数 nn 和 mm,分别表示两个多项式的次数。

第二行 n+1n+1 个整数,分别表示第一个多项式的 00 到 nn 次项前的系数。

第三行 m+1m+1 个整数,分别表示第一个多项式的 00 到 mm 次项前的系数。

输出格式

一行 n+m+1n+m+1 个整数,分别表示乘起来后的多项式的 00 到 n+mn+m 次项前的系数。

样例一

input

1 2
1 2
1 2 1

output

1 4 5 2

explanation

(1+2x)⋅(1+2x+x2)=1+4x+5x2+2x3(1+2x)⋅(1+2x+x2)=1+4x+5x2+2x3。

限制与约定

0≤n,m≤1050≤n,m≤105,保证输入中的系数大于等于 00 且小于等于 99。

时间限制:1s1s

空间限制:256MB256MB

下载

样例数据下载

 
#include<cmath>
#include<cstdio>
#include<complex>
using namespace std;
typedef complex<double> E;
const double Pi=acos(-);
const int N=3e5+;
int n,m,L,R[N];
E a[N],b[N];
void FFT(E *a,int f){
for(int i=;i<n;i++) if(i<R[i]) swap(a[i],a[R[i]]);
for(int i=;i<n;i<<=){
E wn(cos(Pi/i),f*sin(Pi/i));
for(int p=i<<,j=;j<n;j+=p){
E w(,);
for(int k=;k<i;k++,w*=wn){
E x=a[j+k],y=w*a[j+k+i];
a[j+k]=x+y;a[j+k+i]=x-y;
}
}
}
}
int main(){
scanf("%d%d",&n,&m);
for(int i=,x;i<=n;i++) scanf("%d",&x),a[i]=x;
for(int i=,x;i<=m;i++) scanf("%d",&x),b[i]=x;
for(m+=n,n=;n<=m;n<<=) L++;
for(int i=;i<n;i++) R[i]=(R[i>>]>>)|((i&)<<(L-));
FFT(a,);FFT(b,);
for(int i=;i<=n;i++) a[i]*=b[i];
FFT(a,-);
for(int i=;i<=m;i++) printf("%d ",(int)(a[i].real()/n+0.5));
return ;
}
/*
比着敲完就算了,FFT理解,来日方长。
zky神犇写的非常详细
http://blog.csdn.net/iamzky/article/details/22712347
*/

UR#34. 多项式乘法的更多相关文章

  1. [UOJ#34]多项式乘法

    [UOJ#34]多项式乘法 试题描述 这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入 第一行两个整数 n 和 m,分别表示两个多项式的次数. 第二行 n+1 个整数,分别表示第一个多 ...

  2. ●UOJ 34 多项式乘法

    题链: http://uoj.ac/problem/34 题解: FFT入门题. (终于接触到迷一样的FFT了) 初学者在对复数和单位根有简单了解的基础上,可以直接看<再探快速傅里叶变换> ...

  3. UOJ#34. 多项式乘法(NTT)

    这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...

  4. 【刷题】UOJ #34 多项式乘法

    这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 \(n\) 和 \(m\) ,分别表示两个多项式的次数. 第二行 \(n+1\) 个整数,表示第一个多项式的 \( ...

  5. UOJ 34 多项式乘法 FFT 模板

    这是一道模板题. 给你两个多项式,请输出乘起来后的多项式. 输入格式 第一行两个整数 nn 和 mm,分别表示两个多项式的次数. 第二行 n+1n+1 个整数,表示第一个多项式的 00 到 nn 次项 ...

  6. 2018.11.14 uoj#34. 多项式乘法(ntt)

    传送门 今天学习nttnttntt. 其实递归方法和fftfftfft是完全相同的. 只不过fftfftfft的单位根用的是复数中的东西,而nttnttntt用的是数论里面有相同性质的原根. 代码: ...

  7. 2018.11.14 uoj#34. 多项式乘法(fft)

    传送门 NOIpNOIpNOIp爆炸不能阻止我搞oioioi的决心 信息技术课进行一点康复训练. fftfftfft板题. 代码: #include<bits/stdc++.h> usin ...

  8. 【UOJ 34】 #34. 多项式乘法 (FFT)

    [分析] 这个只是用来放模板..[其实我还没完全懂的.. 迭代 代替 递归: #include<cstdio> #include<cstdlib> #include<cs ...

  9. UOJ 34 多项式乘法 ——NTT

    [题目分析] 快速数论变换的模板题目. 与fft的方法类似,只是把复数域中的具有循环性质的单位复数根换成了模意义下的原根. 然后和fft一样写就好了,没有精度误差,但是跑起来比较慢. 这破题目改了好长 ...

随机推荐

  1. TOJ 2703: Cow Digit Game

    2703: Cow Digit Game Time Limit(Common/Java):1000MS/10000MS     Memory Limit:65536KByte Total Submit ...

  2. caffe+vs2013+window10+GPU(CPU)配置

    参考:http://www.echojb.com/cuda/2017/03/15/350138.html https://www.zhihu.com/question/56111727 第一步:首先确 ...

  3. php5.3.3版本前后变化中php-v和sbin/php-fpm -v

    重装php-fpm试试,遂去http://php-fpm.org/download/想下载个新版本的php-fpm, 结果发现版本大于5.3.3的PHP内部已经集成了php-fpm,不用再另行安装了. ...

  4. 【Android】监听viewpager子页面里面的Button按钮

    最近做项目遇到Viewpager+Fragment滑动页面,要监听子页面中的按钮,在网上查了些解决办法: 办法一: 这种方法是在适配器初始化中进行监听,有人亲测通过,但是我继承FragmentPage ...

  5. shit layui & bugs

    shit layui & bugs use is not useful at all! http://www.layui.com/demo/form.html layui.use([" ...

  6. BZOJ3124 [Sdoi2013]直径 【树的直径】

    题目 小Q最近学习了一些图论知识.根据课本,有如下定义.树:无回路且连通的无向图,每条边都有正整数的权值来表示其长度.如果一棵树有N个节点,可以证明其有且仅有N-1 条边. 路径:一棵树上,任意两个节 ...

  7. 二分图最小覆盖的Konig定理及其证明,最小的覆盖证明

    [转http://www.cppblog.com/abilitytao/archive/2009/09/02/95147.html  ->  http://yejingx.ycool.com/p ...

  8. 洛谷 [P2964] 硬币的游戏

    博弈论+dp 依旧是博弈论的壳子,但问的是最大值,所以要dp 设 dp[i][j] 表示该取 i 号硬币,上一次取了 j 个的先手能取的最大值, 因为每次从小到大枚举复杂度太高,所以我们要从 dp[i ...

  9. 理解 virbr0

    virbr0 是 KVM 默认创建的一个 Bridge,其作用是为连接其上的虚机网卡提供 NAT 访问外网的功能. virbr0 默认分配了一个IP 192.168.122.1,并为连接其上的其他虚拟 ...

  10. 【HDOJ5979】Convex(三角函数)

    题意:n个点在一个半径为R的圆上,给出这n个点顺时针的夹角差值,求这n个点的凸包面积 n<=10,R<=10 思路:S=1/2*sinθ*a*b 角度转弧度再用sin C++有点小毛病,叫 ...