lc 263 Ugly Number


lc 263 Ugly Number

Write a program to check whether a given number is an ugly number.

Ugly numbers are positive numbers whose prime factors only include 2, 3, 5. For example, 6, 8 are ugly while 14 is not ugly since it includes another prime factor 7.

Note that 1 is typically treated as an ugly number.

analysation##

Use recursion, then the problem will be much easier.

solution

bool isUgly(int num) {
if (num <= 0)
return 0;
if (num == 1)
return 1;
else if (num%2 == 0)
return isUgly(num/2);
else if (num%3 == 0)
return isUgly(num/3);
else if (num%5 == 0)
return isUgly(num/5);
return 0;
}

LN : leetcode 263 Ugly Number的更多相关文章

  1. leetcode 263. Ugly Number 、264. Ugly Number II 、313. Super Ugly Number 、204. Count Primes

    263. Ugly Number 注意:1.小于等于0都不属于丑数 2.while循环的判断不是num >= 0, 而是能被2 .3.5整除,即能被整除才去除这些数 class Solution ...

  2. [LeetCode] 263. Ugly Number 丑陋数

    Write a program to check whether a given number is an ugly number. Ugly numbers are positive numbers ...

  3. LeetCode 263 Ugly Number

    Problem: Write a program to check whether a given number is an ugly number. Ugly numbers are positiv ...

  4. Leetcode 263 Ugly Number 数论 类似质因数分解

    Ugly Number的质因数仅为2,3,5 将输入的数分别除以2,3,5直到不能除,看是否为1,为1的是Ugly Number,其他则不是. class Solution { public: boo ...

  5. (easy)LeetCode 263.Ugly Number

    Write a program to check whether a given number is an ugly number. Ugly numbers are positive numbers ...

  6. Java [Leetcode 263]Ugly Number

    题目描述: Write a program to check whether a given number is an ugly number. Ugly numbers are positive n ...

  7. [leetcode] 263. Ugly Number (easy)

    只要存在一种因数分解后,其因子是2,3,5中的一种或多种,就算是ugly数字. 思路: 以2/3/5作为除数除后,最后结果等于1的就是ugly数字 Runtime: 4 ms, faster than ...

  8. [LeetCode] 264. Ugly Number II 丑陋数 II

    Write a program to find the n-th ugly number. Ugly numbers are positive numbers whose prime factors ...

  9. 263. Ugly Number(C++)

    263. Ugly Number Write a program to check whether a given number is an ugly number. Ugly numbers are ...

随机推荐

  1. 安装adt-bundle-windows-x86-20130917时遇到的问题及解决方法

    最近在上安卓课,老师让我们下载此软件(adt-bundle-windows-x86-20130917.下载压缩后,打开eclipse的时候,会出现以下情况: 这时说明你的jdk还没下载或者下载错位置了 ...

  2. Ubuntu 16.04安装录屏软件SimpleScreenRecorder

    安装: sudo add-apt-repository ppa:maarten-baert/simplescreenrecorder sudo apt-get update sudo apt-get ...

  3. How to force immediate stop of threads in Jmeter servers如何在jmeter执行完,立即停止jmeter

    https://stackoverflow.com/questions/38900315/how-to-force-immediate-stop-of-threads-in-jmeter-server ...

  4. luajit利用ffi结合C语言实现面向对象的封装库

    luajit中.利用ffi能够嵌入C.眼下luajit的最新版是2.0.4,在这之前的版本号我还不清楚这个扩展库详细怎么样,只是在2.04中,真的非常爽.  既然是嵌入C代码.那么要说让lua支持 ...

  5. 跟踪oracle中sql语句运行过程及相关知识拓展

    select * from v$sqlarea; select * from v$sqlarea where first_load_time>'2010-11-27/09:30:00'; 这种方 ...

  6. 【codevs2183】匹配字符串

    KMP裸题 #include<algorithm> #include<iostream> #include<cstdlib> #include<cstring ...

  7. react-native 项目更名步骤

    刚开始开发项目的时候,更没有想好一个项目名称,如何才能更名一个RN APP名称呢,可按照如下方式操作即可. 使用说明 更改package.json { "name": " ...

  8. CSU 1806 Toll 自适应simpson积分+最短路

    分析:根据这个题学了一发自适应simpson积分(原来积分还可以这么求),然后就是套模板了 学习自适应simpson积分:http://blog.csdn.net/greatwall1995/arti ...

  9. 【BZOJ 3732】 Network

    [题目链接] 点击打开链接 [算法] 求出这个图的最小生成树,对于每次询问,用倍增法求出最近公共祖先,查询最小生成树上两点路径上的最大值 算法的正确性?            假设x和y在最小生成树中 ...

  10. NOI.AC #31 MST —— Kruskal+点集DP

    题目:http://noi.ac/problem/31 好题啊! 题意很明白,对于有关最小生成树(MST)的题,一般是要模拟 Kruskal 过程了: 模拟 Kruskal,也就是把给出的 n-1 条 ...