Codeforces Round #489 (Div. 2) B、C
1 second
256 megabytes
standard input
standard output
Today on Informatics class Nastya learned about GCD and LCM (see links below). Nastya is very intelligent, so she solved all the tasks momentarily and now suggests you to solve one of them as well.
We define a pair of integers (a, b) good, if GCD(a, b) = x and LCM(a, b) = y, where GCD(a, b) denotes the greatest common divisorof a and b, and LCM(a, b) denotes the least common multiple of a and b.
You are given two integers x and y. You are to find the number of good pairs of integers (a, b) such that l ≤ a, b ≤ r. Note that pairs (a, b)and (b, a) are considered different if a ≠ b.
The only line contains four integers l, r, x, y (1 ≤ l ≤ r ≤ 109, 1 ≤ x ≤ y ≤ 109).
In the only line print the only integer — the answer for the problem.
1 2 1 2
2
1 12 1 12
4
50 100 3 30
0
In the first example there are two suitable good pairs of integers (a, b): (1, 2) and (2, 1).
In the second example there are four suitable good pairs of integers (a, b): (1, 12), (12, 1), (3, 4) and (4, 3).
In the third example there are good pairs of integers, for example, (3, 30), but none of them fits the condition l ≤ a, b ≤ r.
题意 在区间[l , r]内 有多少对a,b 的最小公倍数为y(lcm) 和 最大约数为x(gcd)
解析 我们知道 a*b=y*x 所以y里面肯定还有一个因子x 我们只需要考虑 y/x 有多少对因子p,q p*q=y/x且l<=q*x,p*x<=r 且 gcd(q,p)=1
AC代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+,mod = ,inf=0x3f3f3f3f;
typedef long long ll;
ll gcd(ll a,ll b) { return b?gcd(b,a%b):a;}
int main()
{
ll l,r,x,y;
cin>>l>>r>>x>>y;
ll ans=;
if(y%x==)
{
y=y/x;
}
else
{
cout<<ans<<endl;
return ;
}
for(ll i=;i<=sqrt(y);i++)
{
if(y%i==)
{
ll temp=y/i;
if(temp*x>=l&&temp*x<=r&&i*x>=l&&i*x<=r&&gcd(temp,i)==)
{
if(temp==i)
ans++;
else
ans+=;
// cout<<i<<" "<<temp<<endl;
}
}
}
cout<<ans<<endl;
}
1 second
256 megabytes
standard input
standard output
Nastya received a gift on New Year — a magic wardrobe. It is magic because in the end of each month the number of dresses in it doubles (i.e. the number of dresses becomes twice as large as it is in the beginning of the month).
Unfortunately, right after the doubling the wardrobe eats one of the dresses (if any) with the 50% probability. It happens every month except the last one in the year.
Nastya owns x dresses now, so she became interested in the expected number of dresses she will have in one year. Nastya lives in Byteland, so the year lasts for k + 1 months.
Nastya is really busy, so she wants you to solve this problem. You are the programmer, after all. Also, you should find the answer modulo 109 + 7, because it is easy to see that it is always integer.
The only line contains two integers x and k (0 ≤ x, k ≤ 1018), where x is the initial number of dresses and k + 1 is the number of months in a year in Byteland.
In the only line print a single integer — the expected number of dresses Nastya will own one year later modulo 109 + 7.
2 0
4
2 1
7
3 2
21
In the first example a year consists on only one month, so the wardrobe does not eat dresses at all.
In the second example after the first month there are 3 dresses with 50% probability and 4 dresses with 50% probability. Thus, in the end of the year there are 6 dresses with 50% probability and 8 dresses with 50% probability. This way the answer for this test is (6 + 8) / 2 = 7.
题意 有x件裙子 有k+1个月 每过一个月裙子增长一倍 但有50%的可能会少一条不包括最后一个月 问最后的数学期望
解析 数学规律题 推一推就发现 答案是有规律的 是上一个答案的两倍-1 但是我们不能模拟 要写出规律来 所以再总结一下 发现差值是 q=(4*x-2)*2的等比数列 然后求和一下加上初始值就是答案。
教训 :取模不是随便取的 ,先算一下,要爆ll的时候再取模。
AC代码
#include<bits/stdc++.h>
using namespace std;
const int maxn = 1e5+,inf=0x3f3f3f3f;
typedef long long ll;
const int mod=1e9+;
ll poww(ll n,ll m)
{
ll ans = ;
while(m > )
{
if(m & )ans = (ans * n) % mod;
m = m >> ;
n = (n * n) % mod;
}
return ans;
}
ll sum(ll a,ll n)
{
if(n==)
return ;
if(n==)
return a;
ll t=sum(a,n/);
if(n&)
{
ll cur=poww(a,n/+)%mod;
t=(t+(t*cur)%mod)%mod;
t=(t+cur)%mod;
}
else
{
ll cur=poww(a,n/)%mod;
t=(t+(t*cur)%mod)%mod;
}
return t;
}
int main()
{
ll x,m;
cin>>x>>m;
x*=;
ll temp=x*-;
if(x==)
cout<<<<endl;
else if(m==)
cout<<x%mod<<endl;
else if(m==)
cout<<(temp+)%mod<<endl;
else
{
ll ans=(x*-)%mod;
ans=ans+((sum(,m-)+)%mod)*(temp%mod)%mod;
cout<<ans%mod<<endl;
}
}
Codeforces Round #489 (Div. 2) B、C的更多相关文章
- Codeforces Round #437 (Div. 2)[A、B、C、E]
Codeforces Round #437 (Div. 2) codeforces 867 A. Between the Offices(水) 题意:已知白天所在地(晚上可能坐飞机飞往异地),问是否从 ...
- Codeforces Round #298 (Div. 2) A、B、C题
题目链接:Codeforces Round #298 (Div. 2) A. Exam An exam for n students will take place in a long and nar ...
- 【伪暴力+智商剪枝】Codeforces Round #489 (Div. 2) D
失踪人口突然回归……orz.题解还是有必要写的,虽然估计只有自己(?自己也不一定看得懂)看得懂. 题目链接:http://codeforces.com/contest/992/problem/D 题目 ...
- Codeforces Round #482 (Div. 2) C 、 Kuro and Walking Route(dfs)979C
题目链接:http://codeforces.com/contest/979/problem/C 大致题意 给出n个点,有n-1个边将他们链接.给出x,y,当某一路径中出现x....y时,此路不通.路 ...
- Codeforces Round #604 (Div. 2) D、E、F题解
Beautiful Sequence Beautiful Mirrors Beautiful Bracket Sequence (easy version) Beautiful Sequence \[ ...
- Codeforces Round #674 (Div. 3) C、D 题解
C.Increase and Copy #枚举 题目链接 题意 最初你有仅包含一个数字\(1\)的数组\(a\),一次操作中可对该数组进行两类操作: 从数组中选择一个元素,将该元素\(+1\): 从数 ...
- Codeforces Round #677 (Div. 3) E、G题解
E. Two Round Dances #圆排列 题目链接 题意 \(n\)(保证偶数)个人,要表演一个节目,这个节目包含两种圆形舞蹈,而每种圆形舞蹈恰好需要\(n/2\)个人,每个人只能跳一种圆形舞 ...
- Codeforces Round #667 (Div. 3) B、C、D、E 题解
抱歉B.C题咕了这么久 B. Minimum Product #枚举 #贪心 题目链接 题意 给定四个整数\(a, b, x, y\),其中\(a\geq x, b\geq y\),你可以执行不超过\ ...
- Codeforces Round #660 (Div. 2) A、B、C题解
A. Captain Flint and Crew Recruitment #构造 题目链接 题意 定义一类正整数,能够被\(p*q\)表示,其中\(p.q(1<p<q)\)均为素数,称之 ...
随机推荐
- composer Failed to decode zlib stream 无法解码zlib流
Win7 中安装 Composer (PHP) 国内有些网络不能访问美国的Composer官网,可访问 Composer 中文网 学习. 目标 可以在任何目录下的项目中执行 PHP composer. ...
- 外文翻译 《How we decide》赛场上的四分卫 第三节
本书导言翻译 本章第二节 1982年,一位名叫Elliot的病人走进了神经科学家Antonio Damasio的办公室.几个月之前,一个小的肿瘤在它的大脑中被切除,切除点与大脑额叶非常靠近.在手术之前 ...
- FastDFS的简单使用
互联网中有海量的文件,比如电商网站有海量的图片文件,视频网站有海量的视频文件,如果使用传统的模式上传文件,肯定是不可取的.因此需要使用第三方服务器来存储图片 . 一.FastDFS简介 FastD ...
- 正则表达式 - IP地址、Mac地址、端口、经纬度、车牌号码校验
IP地址验证: /^(\d|[1-9]\d|1\d{2}|2[0-5][0-5])\.(\d|[1-9]\d|1\d{2}|2[0-5][0-5])\.(\d|[1-9]\d|1\d{2}|2[0 ...
- Android EventBus3.0详解
修改日志 -- 添加索引部分得细节,添加kotlin的支持方式 https://www.jianshu.com/p/31e3528ca7e5
- iOS---设置控件的内容模式
容易混淆的内容摆放属性: 1. textAligment : 文字的水平方向的对齐方式 取值 NSTextAlignmentLeft = 0, // 左对齐 NSTextAlignmentCenter ...
- call和apply和bind的区别
在 javascript 中,call 和 apply 都是为了改变某个函数运行时的上下文(context)而存在的,换句话说,就是为了改变函数体内部 this 的指向. JavaScript 的一大 ...
- C/C++ new/delete []、内存泄漏、动态数组
一.概念 new/delete是用于动态分配和撤销内存的运算符.new/delete是c++里才有的,c中是用malloc和free,c++虽然也可以用,但是不建议用.当我们使用关键字new在堆上动态 ...
- Java常用工具类---image图片处理工具类、Json工具类
package com.jarvis.base.util; import java.io.ByteArrayInputStream;import java.io.ByteArrayOutputStre ...
- 反射(hasattr,getattr,delattr,setattr)
反射(hasattr,getattr,setattr,delattr) 反射在类中的使用 反射就是通过字符串来操作类或者对象的属性 反射本质就是在使用内置函数,其中反射有四个内置函数: hasattr ...