Problem - 4635 http://acm.hdu.edu.cn/showproblem.php?pid=4635

题目大意:

n个点,m条边,求最多再加几条边,然后这个图不是强连通

分析:

这是一个单向图,如果强连通的话,他最多应该有n*(n-1)条边,假设有a个强连通块,任取其中一个强连通块,假设取出的这个强连通块里有x个点,剩下的(n-a)个点看成一个强连通块,如果让这两个强连通块之间不联通,肯定是这两个只有一个方向的边,最多就会有x*(n-x)条边  所以最多加n*(n-1)-x*x(n-x)-m边。所以当x最小是式子最大。

Problem Description
Give a simple directed graph with N nodes and M edges. Please tell me the maximum number of the edges you can add that the graph is still a simple directed graph. Also, after you add these edges, this graph must NOT be strongly connected.
A simple directed graph is a directed graph having no multiple edges or graph loops.
A strongly connected digraph is a directed graph in which it is possible to reach any node starting from any other node by traversing edges in the direction(s) in which they point. 
 
Input
The first line of date is an integer T, which is the number of the text cases.
Then T cases follow, each case starts of two numbers N and M, 1<=N<=100000, 1<=M<=100000, representing the number of nodes and the number of edges, then M lines follow. Each line contains two integers x and y, means that there is a edge from x to y.
 
Output
For each case, you should output the maximum number of the edges you can add.
If the original graph is strongly connected, just output -1.
 
Sample Input
3
3 3
1 2
2 3
3 1
3 3
1 2
2 3
1 3
6 6
1 2
2 3
3 1
4 5
5 6
6 4
 
Sample Output
Case 1: -1
Case 2: 1
Case 3: 15
 
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<stack>
#include<queue>
#include<vector> using namespace std;
#define N 100005
#define INF 0x3f3f3f3f struct node
{
int to,next;
}edge[N*]; int low[N],dfn[N],Time,top,ans,Stack[N],belong[N],sum,head[N],aa[N],in[N],out[N],Is[N]; void Inn()
{
memset(low,,sizeof(low));
memset(dfn,,sizeof(dfn));
memset(Stack,,sizeof(Stack));
memset(belong,,sizeof(belong));
memset(head,-,sizeof(head));
memset(aa,,sizeof(aa));
memset(in,,sizeof(in));
memset(out,,sizeof(out));
memset(Is,,sizeof(Is));
Time=top=ans=sum=;
} void add(int from,int to)
{
edge[ans].to=to;
edge[ans].next=head[from];
head[from]=ans++;
} void Tarjin(int u,int f)
{
low[u]=dfn[u]=++Time;
Stack[top++]=u;
Is[u]=;
int v;
for(int i=head[u];i!=-;i=edge[i].next)
{
v=edge[i].to;
if(!dfn[v])
{
Tarjin(v,u);
low[u]=min(low[u],low[v]);
}
else if(Is[v])
low[u]=min(low[u],dfn[v]);
}
if(dfn[u]==low[u])
{
sum++;
do
{
v=Stack[--top];
belong[v]=sum;
aa[sum]++;
Is[v]=;
}while(v!=u);
}
} void solve(int n,int m)
{
for(int i=;i<=n;i++)
{
if(!dfn[i])
Tarjin(i,);
}
if(sum==)
{
printf("-1\n");
return ;
}
long long Max=;
for(int i=;i<=n;i++)
{
for(int j=head[i];j!=-;j=edge[j].next)
{
int u=belong[i];
int v=belong[edge[j].to];
if(u!=v)
{
in[v]++;
out[u]++;
}
}
}
long long c=n*(n-)-m;
for(int i=;i<=sum;i++)
{
if(!in[i] || !out[i])
Max=max(Max,c-(aa[i]*(n-aa[i])));
}
printf("%lld\n",Max);
}
int main()
{
int T,n,m,a,b,i,t=;
scanf("%d",&T);
while(T--)
{
Inn();
scanf("%d %d",&n,&m);
for(i=;i<m;i++)
{
scanf("%d %d",&a,&b);
add(a,b);
}
printf("Case %d: ",t++);
solve(n,m);
}
return ;
}

Strongly connected-HDU4635的更多相关文章

  1. Strongly connected(hdu4635(强连通分量))

    /* http://acm.hdu.edu.cn/showproblem.php?pid=4635 Strongly connected Time Limit: 2000/1000 MS (Java/ ...

  2. PTA Strongly Connected Components

    Write a program to find the strongly connected components in a digraph. Format of functions: void St ...

  3. algorithm@ Strongly Connected Component

    Strongly Connected Components A directed graph is strongly connected if there is a path between all ...

  4. cf475B Strongly Connected City

    B. Strongly Connected City time limit per test 2 seconds memory limit per test 256 megabytes input s ...

  5. 【CF913F】Strongly Connected Tournament 概率神题

    [CF913F]Strongly Connected Tournament 题意:有n个人进行如下锦标赛: 1.所有人都和所有其他的人进行一场比赛,其中标号为i的人打赢标号为j的人(i<j)的概 ...

  6. HDU 4635 Strongly connected (Tarjan+一点数学分析)

    Strongly connected Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) ...

  7. 【CodeForces】913 F. Strongly Connected Tournament 概率和期望DP

    [题目]F. Strongly Connected Tournament [题意]给定n个点(游戏者),每轮游戏进行下列操作: 1.每对游戏者i和j(i<j)进行一场游戏,有p的概率i赢j(反之 ...

  8. HDU4625:Strongly connected(思维+强连通分量)

    Strongly connected Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  9. HDU 4635 Strongly connected (2013多校4 1004 有向图的强连通分量)

    Strongly connected Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  10. HDU 4635 —— Strongly connected——————【 强连通、最多加多少边仍不强连通】

    Strongly connected Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u ...

随机推荐

  1. 【Mybatis】环境搭建

    SqlMapConfig.xml(MyBatis配置文件) <?xml version="1.0" encoding="UTF-8" ?> < ...

  2. vuetifyjs简介及其使用

    何为 vuetify 一个vue ui库,提供vue组件供使用.根据 Google Material Design 指南实现(https://material.io/).Vuetify支持SSR(服务 ...

  3. Android拍照得到全尺寸图片并进行压缩/拍照或者图库选择 压缩后 图片 上传

    http://www.jb51.net/article/77223.htm https://www.cnblogs.com/breeze1988/p/4019510.html

  4. CDN概述

  5. OC语言Block 续

    OC语言 Block 转载:http://blog.csdn.net/weidfyr/article/details/48138167 1.Block对象中的变量行为 结论: 在block代码块内部可 ...

  6. sql server查看某个表上的触发器

    用企业管理器查看 在某个具体的表上点右键->“所有任务”->“管理触发器”,选择所要查看的触发器

  7. 【C++】模板简述(三):类模板

    上文简述了C++模板中的函数模板的格式.实例.形参.重载.特化及参数推演,本文主要介绍类模板. 一.类模板格式 类模板也是C++中模板的一种,其格式如下: template<class 形参名1 ...

  8. 在PetaPoco中使用Where in

    之前一直没在意,今天查了很多资料,才知道在petapoco中使用in关键字需要使用命名参数,否则是无效的(或者只查出第一个条件的记录),示例如下: var tags= new string[]{“c1 ...

  9. Java8新特性 Stream流式思想(三)

    Stream接口中的常用方法 forEach()方法package cn.com.cqucc.demo02.StreamMethods.Test02.StreamMethods; import jav ...

  10. boostrapvalidator

    一个例子 <%@ page contentType="text/html;charset=UTF-8" language="java" %> < ...