bzoj 4784: [Zjoi2017]仙人掌【tarjan+树形dp】
其实挺简单的但是没想出来…………
首先判断无解情况,即,一开始的图就不是仙人掌,使用tarjan判断如果一个点dfs下去有超过一个点比他早,则说明存在非简单环。
然后考虑dp,显然原图中已经属于某个简单环的边就是没用的,tarjan缩点之后删掉两个端点在一个强连通分量中的边。(无向图的tarjan要记录father防止往回走,instack数组不需要了。
现在图变成了一个森林。
然后设sum为某个点的子树个数,w[i]为i棵子树相互连成环的方案数,w[i]=w[i-1]+w[i-2]*(i-1);g[i]为第i个点(i不是根)的方案数,g[u]=f[u]*w[sum]+f[u]*w[sum-1]*sum;f[i]为第i个点(i是根)的方案数f[u]=f[u]*w[sum]
依次树形dp,把答案乘起来即可。
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int N=500005,mod=998244353;
int T,n,m,h[N],cnt,f[N],w[N],g[N],dfn[N],tot,low[N],bl[N],col,s[N],top;
bool v[N],fl;
long long ans;
struct qwe
{
int ne,to;
}e[N*10];
int read()
{
int r=0,f=1;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].to=v;
h[u]=cnt;
}
void tarjan(int u,int fa)
{
dfn[u]=low[u]=++tot;
s[++top]=u;
bool flag=0;
for(int i=h[u];i;i=e[i].ne)
if(e[i].to!=fa)
{
if(!dfn[e[i].to])
{
tarjan(e[i].to,u);
low[u]=min(low[u],low[e[i].to]);
if(low[e[i].to]<dfn[u])
{
if(flag)
{
fl=0;
return;
}
flag=1;
}
}
else
{
low[u]=min(low[u],dfn[e[i].to]);
if(dfn[e[i].to]<dfn[u])
{
if(flag)
{
fl=0;
return;
}
flag=1;
}
}
}
if(dfn[u]==low[u])
{
while(1)
{
bl[s[top--]]=u;
if(s[top+1]==u)
break;
}
}
}
void dp(int u,int fa)
{//cout<<u<<endl;
v[u]=1,f[u]=1;g[u]=0;
int sum=0;
for(int i=h[u];i;i=e[i].ne)
if(bl[u]!=bl[e[i].to]&&e[i].to!=fa)
{
dp(e[i].to,u);
f[u]=1ll*f[u]*g[e[i].to]%mod;
sum++;
}
g[u]=(1ll*f[u]*w[sum]%mod+1ll*f[u]*w[sum-1]%mod*sum%mod)%mod;
f[u]=1ll*f[u]*w[sum]%mod;
}
int main()
{
T=read();
w[0]=1,w[1]=1,w[2]=2;
for(int i=3;i<=500000;i++)
w[i]=(w[i-1]+1ll*w[i-2]*(i-1)%mod)%mod;
while(T--)
{
cnt=0;ans=1;tot=0;fl=1;top=0;
n=read(),m=read();
for(int i=1;i<=n;i++)//比memset快5倍!!
v[i]=0,h[i]=0,bl[i]=0,dfn[i]=0;
for(int i=1;i<=m;i++)
{
int u=read(),y=read();
add(u,y);add(y,u);
}
tarjan(1,0);//cout<<"OK"<<endl;
if(!fl)
{
puts("0");
continue;
}
for(int i=1;i<=n;i++)
if(!v[i])
{
dp(i,0);
ans=ans*f[i]%mod;
}
printf("%lld\n",ans);
}
return 0;
}
bzoj 4784: [Zjoi2017]仙人掌【tarjan+树形dp】的更多相关文章
- Codeforces 980F Cactus to Tree 仙人掌 Tarjan 树形dp 单调队列
原文链接https://www.cnblogs.com/zhouzhendong/p/CF980F.html 题目传送门 - CF980F 题意 给定一个 $n$ 个节点 $m$ 条长为 $1$ 的边 ...
- LOJ2250 [ZJOI2017] 仙人掌【树形DP】【DFS树】
题目分析: 不难注意到仙人掌边可以删掉.在森林中考虑树形DP. 题目中说边不能重复,但我们可以在结束后没覆盖的边覆盖一个重复边,不改变方案数. 接着将所有的边接到当前点,然后每两个方案可以任意拼接.然 ...
- BZOJ4784 ZJOI2017仙人掌(树形dp+dfs树)
首先考虑是棵树的话怎么做.可以发现相当于在树上选择一些长度>=2的路径使其没有交,同时也就相当于用一些没有交的路径覆盖整棵树. 那么设f[i]为覆盖i子树的方案数.转移时考虑包含根的路径.注意到 ...
- [BZOJ 4033] [HAOI2015] T1 【树形DP】
题目链接:BZOJ - 4033 题目分析 使用树形DP,用 f[i][j] 表示在以 i 为根的子树,有 j 个黑点的最大权值. 这个权值指的是,这个子树内部的点对间距离的贡献,以及 i 和 Fat ...
- [BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩)
[BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u ...
- bzoj 2427 软件安装 - Tarjan - 树形动态规划
题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得这些软件的价值尽可能大(即Vi的和最大). 但是 ...
- Tarjan+树形DP【洛谷P2515】[HAOI2010]软件安装
[洛谷P2515][HAOI2010]软件安装 题目描述 现在我们的手头有N个软件,对于一个软件i,它要占用Wi的磁盘空间,它的价值为Vi.我们希望从中选择一些软件安装到一台磁盘容量为M计算机上,使得 ...
- BZOJ 2286 消耗战 (虚树+树形DP)
给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...
- BZOJ 2435 道路修建 NOI2011 树形DP
一看到这道题觉得很水,打了递归树形DP后RE了一组,后来发现必须非递归(BFS) 递归版本84分: #include<cstdio> #include<cstring> #in ...
随机推荐
- 组队训练2 回放(转载至cxhscst2's blog)
2017/3/4 12:00-17:00 Solve 9 / 13 Penalty 717 练习赛过程回放: 开场5分中J题签到(cst) 12分钟时qw签到A 这时qw继续开写M,WA,检查代码. ...
- JavaScript高级程序设计重点(一)
1.一个完整的 JavaScript 实现应该由下列三 个不同的部分组成 核心(ECMAScript) 文档对象模型(DOM) 浏览器对象模型(BOM) 2.Undefined 类型只有一 ...
- webpack体积优化篇二(GZ压缩)
这里我列举几个常用的能够用于减少包体大小的插件,我们可以根据项目需求选择性的使用: compression-webpack-plugin :该插件能够将资源文件压缩为.gz文件,并且根据客户端的需求按 ...
- NodeJS+MongoDB+AngularJS+Bootstrap书店示例
目录 一.Bootstrap 1.1.添加引用 1.2.在页面中使用BootStrap 1.3.可视化布局 二.使用MongoDB创建数据库 2.1.启动MongoDB数据库 2.2.启动数据库GUI ...
- Go---Redis连接池
之前一篇文章介绍过使用redigo连接redis数据库处理,在使用中发现如果初始化一条链接连接redis做相关操作,使用中发现当两个程序交替使用redis时,先前建立的链接会断掉,只能每次操作的时候重 ...
- 【Nginx】http模块的数据结构
定义fttp模块方式很简单,比如:ngx_module_t ngx_http_mytest_module; 其中,ngx_module_t是一个Nginx模块的数据结构. typedef struct ...
- javascript闭包诡异的问题
var funcs = []; for (var i = 0; i < 3; i++) { // let's create 3 functions funcs[i] = function() { ...
- CentOS 6.x Inotify+Rsync
CentOS 6.x Inotify+Rsync yum -y install lrzsz [root@rsync ~]# mount -t nfs 10.6.100.75:/volume1/pace ...
- Office EXCEL 如何设置最大行高
对于单个单元格行来说,行高必须在0-409之间 但是如果合并了两个单元格,则行高就扩展了一倍,不止409,而是两倍的409.
- Deepin-安装(读写文件)权限
在安装NODE管理模块N时,遇到了权限问题 1.给予程序读写权限(仅限文件夹) 查看权限:ls -l 或 ls 添加权限: 示例:chmod +rw xx 实例:chmod +rw node 关于权限 ...