P4170 [CQOI2007]涂色
区间dp,设\(f[l][r]\)表示区间\((l,r)\)的最小次数,当\(l==r\)时为\(1\),当\(s[l]==s[r]\)时为\(min(f[l][r-1],f[l+1][r])\),否则枚举断点\(k\),为\(min(f[l][k]+f[k+1][r])\)
//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=55;
char s[N];int f[N][N],n;
int main(){
// freopen("testdata.in","r",stdin);
scanf("%s",s+1),n=strlen(s+1),memset(f,0x3f,sizeof(f));
fp(i,1,n)f[i][i]=1;
fp(l,1,n-1)fp(i,1,n-l){
if(s[i]==s[i+l])f[i][i+l]=min(f[i+1][i+l],f[i][i+l-1]);
else fp(k,i,i+l-1)f[i][i+l]=min(f[i][i+l],f[i][k]+f[k+1][i+l]);
}printf("%d\n",f[1][n]);return 0;
}
P4170 [CQOI2007]涂色的更多相关文章
- 【算法•日更•第三十期】区间动态规划:洛谷P4170 [CQOI2007]涂色题解
废话不多说,直接上题: P4170 [CQOI2007]涂色 题目描述 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字符 ...
- 洛谷 P4170 [CQOI2007]涂色
题目描述 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字符串表示这个目标:RGBGR. 每次你可以把一段连续的木版涂成一个 ...
- luogu P4170 [CQOI2007]涂色
题目描述 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字符串表示这个目标:RGBGR. 每次你可以把一段连续的木版涂成一个 ...
- 再一道区间DP -- P4170 [CQOI2007]涂色
https://www.luogu.org/problemnew/show/P4170 一道简单的区间DP,注意读入 #include <bits/stdc++.h> #define up ...
- 洛谷P4170 [CQOI2007]涂色(区间dp)
题意 题目链接 Sol 震惊,某知名竞赛网站竟照搬省选原题! 裸的区间dp,\(f[l][r]\)表示干掉\([l, r]\)的最小花费,昨天写的时候比较困于是就把能想到的转移都写了.. // luo ...
- 洛谷P4170 [CQOI2007]涂色题解
废话: 这个题我第一眼看就是贪心呐, 可能是我之前那做过一道类似的题这俩题都是关于染色的 现在由于我帅气无比的学长的指导, 我已经豁然开朗, 这题贪心不对啊, 当时感觉自己好厉害贪心都能想出来 差点就 ...
- 【DP】BZOJ 1260: [CQOI2007]涂色paint
1260: [CQOI2007]涂色paint Time Limit: 30 Sec Memory Limit: 64 MBSubmit: 893 Solved: 540[Submit][Stat ...
- BZOJ 1260: [CQOI2007]涂色paint( 区间dp )
区间dp.. dp( l , r ) 表示让 [ l , r ] 这个区间都变成目标颜色的最少涂色次数. 考虑转移 : l == r 则 dp( l , r ) = 1 ( 显然 ) s[ l ] = ...
- BZOJ_1260_[CQOI2007]涂色paint _区间DP
BZOJ_1260_[CQOI2007]涂色paint _区间DP 题意: 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字 ...
随机推荐
- Codeforces 653B Bear and Compressing【DFS】
题目链接: http://codeforces.com/problemset/problem/653/B 题意: 要求你构造一个长度为n的字符串使得通过使用m个操作,最终获得字符a.已知第i个操作将字 ...
- SpringMVC Ueditor1.4.3 未找到上传数据
ueditor自事的fileupload组件与spring的有冲突.将那个类BinaryUploader 重写就可以了 return storageState; ...
- Maven+mybatis教程
首先,配置maven 在eclipse中把maven路径和settings.xml文件配置好之后,否则后续会有一些问题 可以设一个环境变量M2_HOME指向你的maven安装目录 M2_HOME=G: ...
- ntfs格式uefi启动u盘
http://www.laomaotao.org/softhelp/syjc/925.html http://www.laomaotao.org/softhelp/wtjd/989.html http ...
- Python pandas学习笔记
参考文献:<Python金融大数据分析> #导入模块 import pandas as pd #生成dataframe df = pd.DataFrame([10,20,30,40], c ...
- Mysql不同存储引擎的表转换方法
Mysql不同存储引擎的表转换方法 1.Alter table直接修改表的存储引擎,但是这样会导致大量的系统开销,Mysql为此要执行一个就表向新表的逐行复制.在此期间,转换操作可能会占用服务器的所有 ...
- SpringBoot初始教程之项目结构(一)
SpringBoot初始教程之项目结构 1 简介 spring Boot makes it easy to create stand-alone, production-grade Spring ba ...
- [RxJS] Implement RxJS `concatMap` by Waiting for Inner Subscriptions to Complete
Unlike mergeMap and switchMap, concatMap focuses on when "inner" subscriptions "compl ...
- IE将開始屏蔽旧版ActiveX控件
微软IE团队上周宣布将在IE中屏蔽旧版本号的ActiveX控件以加强IE的安全性.首先会被禁用的旧版本号ActiveX控件包括: J2SE 1.4, 低于update 43 的版本号 J2SE 5.0 ...
- var和dynamic的应用 var、动态类型 dynamic 深入浅析C#中的var和dynamic ----demo
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.T ...