传送门

区间dp,设\(f[l][r]\)表示区间\((l,r)\)的最小次数,当\(l==r\)时为\(1\),当\(s[l]==s[r]\)时为\(min(f[l][r-1],f[l+1][r])\),否则枚举断点\(k\),为\(min(f[l][k]+f[k+1][r])\)

//minamoto
#include<bits/stdc++.h>
#define R register
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
const int N=55;
char s[N];int f[N][N],n;
int main(){
// freopen("testdata.in","r",stdin);
scanf("%s",s+1),n=strlen(s+1),memset(f,0x3f,sizeof(f));
fp(i,1,n)f[i][i]=1;
fp(l,1,n-1)fp(i,1,n-l){
if(s[i]==s[i+l])f[i][i+l]=min(f[i+1][i+l],f[i][i+l-1]);
else fp(k,i,i+l-1)f[i][i+l]=min(f[i][i+l],f[i][k]+f[k+1][i+l]);
}printf("%d\n",f[1][n]);return 0;
}

P4170 [CQOI2007]涂色的更多相关文章

  1. 【算法•日更•第三十期】区间动态规划:洛谷P4170 [CQOI2007]涂色题解

    废话不多说,直接上题:  P4170 [CQOI2007]涂色 题目描述 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字符 ...

  2. 洛谷 P4170 [CQOI2007]涂色

    题目描述 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字符串表示这个目标:RGBGR. 每次你可以把一段连续的木版涂成一个 ...

  3. luogu P4170 [CQOI2007]涂色

    题目描述 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字符串表示这个目标:RGBGR. 每次你可以把一段连续的木版涂成一个 ...

  4. 再一道区间DP -- P4170 [CQOI2007]涂色

    https://www.luogu.org/problemnew/show/P4170 一道简单的区间DP,注意读入 #include <bits/stdc++.h> #define up ...

  5. 洛谷P4170 [CQOI2007]涂色(区间dp)

    题意 题目链接 Sol 震惊,某知名竞赛网站竟照搬省选原题! 裸的区间dp,\(f[l][r]\)表示干掉\([l, r]\)的最小花费,昨天写的时候比较困于是就把能想到的转移都写了.. // luo ...

  6. 洛谷P4170 [CQOI2007]涂色题解

    废话: 这个题我第一眼看就是贪心呐, 可能是我之前那做过一道类似的题这俩题都是关于染色的 现在由于我帅气无比的学长的指导, 我已经豁然开朗, 这题贪心不对啊, 当时感觉自己好厉害贪心都能想出来 差点就 ...

  7. 【DP】BZOJ 1260: [CQOI2007]涂色paint

    1260: [CQOI2007]涂色paint Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 893  Solved: 540[Submit][Stat ...

  8. BZOJ 1260: [CQOI2007]涂色paint( 区间dp )

    区间dp.. dp( l , r ) 表示让 [ l , r ] 这个区间都变成目标颜色的最少涂色次数. 考虑转移 : l == r 则 dp( l , r ) = 1 ( 显然 ) s[ l ] = ...

  9. BZOJ_1260_[CQOI2007]涂色paint _区间DP

    BZOJ_1260_[CQOI2007]涂色paint _区间DP 题意: 假设你有一条长度为5的木版,初始时没有涂过任何颜色.你希望把它的5个单位长度分别涂上红.绿.蓝.绿.红色,用一个长度为5的字 ...

随机推荐

  1. java HashMap的使用

    java HashMap的使用 import java.util.HashMap; import java.util.Iterator; public class WpsklHashMap { pub ...

  2. python学习之-- 协程

    协程(coroutine)也叫:微线程,是一种用户态的轻量级线程,就是在单线程下实现并发的效果.优点:1:无需线程上下文切换的开销.(就是函数之间来回切换)2:无需原子操作锁定及同步的开销.(如改一个 ...

  3. 各种ORM框架对比(理论篇,欢迎来观摩,并且纠正部分错误,防止误区)

    各种ORM框架对比 目前框架有以下 PetaPoco Dapper.NET Massive Simple.Data Chain PetaPoco 轻量级,以前单文件,目前有维护形成项目级别,适合多个数 ...

  4. IOS开发 APP提交程序上传流程

    由于苹果的机制,在非越狱机器上安装应用必须通过官方的App Store,开发者开发好应用后上传App Store,也需要通过审核等环节.AppCan作为一个跨主流平台的一个开发平台,也对ipa包上传A ...

  5. Windows7系统下优化固态硬盘

    一.AHCI硬盘模式可提高硬盘性能,确定你的固态硬盘是运行在AHCI模式下,打开“HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Servicesmsahci” ...

  6. MySQL Study之--Percona Server版本号

    MySQL Study之--Percona Server版本号 1.简单介绍      Percona 为 MySQL 数据库server进行了改进.在功能和性能上较 MySQL 有着非常显著的提升. ...

  7. mina客户端与服务端通信的易错点

    使用mina进行项目开发时,如果客户端与服务端不在同一个项目下,需要关注一下两点: 第一.服务端与客户端的编码解码器一致 第二.过程中所用到的实体类的包名需要一致

  8. Web—CSS概述

    一.概念: 它是一种用来表现HTML(标准通用标记语言的一个应用)或XML(标准通用标记语言 的一个子集)等文件样式的计算机语言. 二.特点: 1.实现网页内容与样式的分离     2.降低图形文件的 ...

  9. python各进制、字节串间的转换

    >>> i = 13 >>> bin(i) '0b1101' >>> oct(i) '0o15' >>> hex(i) '0xd ...

  10. UIButton的图片和文字相对位置调整

    通常.假设直接设置UIButton的图片和文字,默认的两者相对位置可能不是我们想要的,那么须要进行调整. 须要用到的函数例如以下: UIEdgeInsetsMake(CGFloat top, CGFl ...