先跑一遍最大流,然后对残量网络(即所有没有满流的边)进行tarjan缩点。

  • 能成为最小割的边一定满流:因为最小割不可能割一半的边;
  • 连接s、t所在联通块的满流边一定在最小割里:如果不割掉这条边的话,就能再次从s到t增广
  • 连接两个不同联通块的满流边可能在最小割里:新图(即缩点后只有满流边的图)的任意一条s、t割都是最小割,所以可以任取割的方案
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int N=50005,M=100005,inf=1e9;
int n,m,s,t,h[N],cnt=1,le[N],dfn[N],low[N],tot,bl[N],con,st[N],top;
bool in[N];
struct qwe
{
int ne,no,to,va;
}e[M<<1];
int read()
{
int f=1,r=0;
char p=getchar();
while(p>'9'||p<'0')
{
if(p=='-')
f=-1;
p=getchar();
}
while(p>='0'&&p<='9')
{
r=r*10+p-48;
p=getchar();
}
return r*f;
}
void add(int u,int v,int w)
{
cnt++;
e[cnt].ne=h[u];
e[cnt].no=u;
e[cnt].to=v;
e[cnt].va=w;
h[u]=cnt;
}
void ins(int u,int v,int w)
{
add(u,v,w);
add(v,u,0);
}
bool bfs()
{
queue<int>q;
memset(le,0,sizeof(le));
le[s]=1;
q.push(s);
while(!q.empty())
{
int u=q.front();
q.pop();
for(int i=h[u];i;i=e[i].ne)
if(e[i].va>0&&!le[e[i].to])
{
le[e[i].to]=le[u]+1;
q.push(e[i].to);
}
}
return le[t];
}
int dfs(int u,int f)
{
if(u==t||!f)
return f;
int us=0;
for(int i=h[u];i&&us<f;i=e[i].ne)
if(e[i].va>0&&le[e[i].to]==le[u]+1)
{
int t=dfs(e[i].to,min(e[i].va,f-us));
e[i].va-=t;
e[i^1].va+=t;
us+=t;
}
if(!us)
le[u]=0;
return us;
}
void dinic()
{
while(bfs())
dfs(s,inf);
}
void tarjan(int u)
{
dfn[u]=low[u]=++tot;
in[st[++top]=u]=1;
for(int i=h[u];i;i=e[i].ne)
if(e[i].va)//保证在残量网络上
{
if(!dfn[e[i].to])
{
tarjan(e[i].to);
low[u]=min(low[u],low[e[i].to]);
}
else if(in[e[i].to])
low[u]=min(low[u],dfn[e[i].to]);
}
if(low[u]==dfn[u])
{
con++;
while(st[top]!=u)
{
bl[st[top]]=con;
in[st[top--]]=0;
}
bl[st[top]]=con;
in[st[top--]]=0;
}
}
int main()
{
n=read(),m=read(),s=read(),t=read();
for(int i=1;i<=m;i++)
{
int u=read(),v=read(),w=read();
ins(u,v,w);
}
dinic();
for(int i=1;i<=n;i++)
if(!dfn[i])
tarjan(i);/cout<<"ok"<<endl;
for(int i=2;i<=cnt;i+=2)
{
if(e[i].va)
puts("0 0");
else
{
if(bl[e[i].no]!=bl[e[i].to])
printf("1 ");
else
printf("0 ");
if(bl[e[i].no]==bl[s]&&bl[e[i].to]==bl[t])
puts("1");
else
puts("0");
}
}
return 0;
}

bzoj 1797: [Ahoi2009]Mincut 最小割【tarjan+最小割】的更多相关文章

  1. BZOJ 1797: [Ahoi2009]Mincut 最小割

    1797: [Ahoi2009]Mincut 最小割 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2076  Solved: 885[Submit] ...

  2. BZOJ 1797: [Ahoi2009]Mincut 最小割( 网络流 )

    先跑网络流, 然后在残余网络tarjan缩点. 考虑一条边(u,v): 当且仅当scc[u] != scc[v], (u,v)可能出现在最小割中...然而我并不会证明 当且仅当scc[u] = scc ...

  3. ●BZOJ 1797 [Ahoi2009]Mincut 最小割

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=1797 题解: 详细的讲解去看http://hzwer.com/3217.html首先跑一个最 ...

  4. bzoj 1797: [Ahoi2009]Mincut 最小割 (网络流)

    太神了直接看了hzwer的题解,有个新认识,一条路径上满流的一定是这条路径上所有边的最小值. type arr=record toward,next,cap,from:longint; end; co ...

  5. 1797: [Ahoi2009]Mincut 最小割

    1797: [Ahoi2009]Mincut 最小割 链接 分析: 题意为:问一条边是否可能存在于最小割中,是否一定存在于最小割中. 首先最小割的边一定是满流的边.且这条边点两个端点u.v中,至少一个 ...

  6. [BZOJ 1797][AHOI2009]最小割(最小割关键边的判断)

    题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1797 分析: 在残余网络中看: 对于第1问: 1.首先这个边必须是满流 2.其次这个边 ...

  7. bzoj1797: [Ahoi2009]Mincut 最小割(最小割+强联通tarjan)

    1797: [Ahoi2009]Mincut 最小割 题目:传送门 题解: 感觉是一道肥肠好的题目. 第二问其实比第一问简单? 用残余网络跑强联通,流量大于0才访问. 那么如果两个点所属的联通分量分别 ...

  8. bzoj1797: [Ahoi2009]Mincut 最小割

    最大流+tarjan.然后因为原来那样写如果图不连通的话就会出错,WA了很久. jcvb: 在残余网络上跑tarjan求出所有SCC,记id[u]为点u所在SCC的编号.显然有id[s]!=id[t] ...

  9. BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan

    BZOJ_1797_[Ahoi2009]Mincut 最小割_最小割+tarjan Description A,B两个国家正在交战,其中A国的物资运输网中有N个中转站,M条单向道路.设其中第i (1≤ ...

随机推荐

  1. HDU——2444 The Accomodation of Students

    The Accomodation of Students Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

  2. Codechef-CHEFPRAD(找事件点+贪心)

    题意: 定义一个函数maxMatching(A,B,y),其输入包含两个整数数组 A 和 B 以及一个整数 y,返回一个整数. 记数组 A 的大小为 N,数组 B 的大小为 M.考虑一个由 {a1, ...

  3. foobar2000使用cue文件播放时出现Unable to open item for playback (Object not found):的问题解决

    如下错误: 一般是找不到APE文件导致的.解决方法如下: 1.打开APE文件,对一下路径修改即可.

  4. sql 语句哪里添加单引号问题

    1.sql 语句哪里添加单引号问题,哪些地方必须加双引号,否则sql语句会报错? :涉及varchar的值的时候,必须有单引号包括varchar值.int等其他字段类型,则不需要加单引号包括. 如: ...

  5. pip命令自动补全功能;设置代理;使用国内源

    这是pip自带的功能 执行的脚本 把脚本写入.zshrc或者profile等里面,执行source立即生效 设置代理: pip --proxy=http://username:password@pro ...

  6. Navicat for MySQL如何导入SQL文件

    1 新建一个数据库,字符集和排序规格如下   2 打开这个数据库,然后运行SQL文件即可   3 刷新一下所有表就出来了

  7. C#结构类型图

    C#结构类型图     分类: C#

  8. SGU - 186 - The Chain (贪心)

    186. The Chain time limit per test: 0.25 sec. memory limit per test: 4096 KB input: standard input o ...

  9. Ubuntu14.04 64bit下Caffe + CUDA 6.5安装详细步骤

    不多说,直接上干货! 笔者花了很长时间才装完,主要是cuda安装和opencv安装比较费劲,cuda找不到32位的安装包只好重装64位的ubuntu系统,opencv 也是尝试了很久才解决,这里建议用 ...

  10. Wiz笔记发布博客工具无法获取分类修复

    使用Wiz笔记可以很方便的将笔记发布到博客,而且支持markdwon书写,并且可以很方便的通过复制粘贴来插入图片. 用法:http://blog.wiz.cn/wiz-plugin-blog-writ ...