题目链接:

  Poj 2112 Optimal Milking

题目描述:

  有k个挤奶机,c头牛,每台挤奶机每天最多可以给m头奶牛挤奶。挤奶机编号从1到k,奶牛编号从k+1到k+c,给出(k+c)*(k+c)的矩阵maps,maps[i][j]代表i到j的距离,问到达挤奶机需要步行最长的奶牛最短要走多少距离?(刚开始看到题目很迷啊,怎么算测试实例答案都是1,原来是非真实存在的路径长度都记为0,那么maps中的零就是INF咯)。

解题思路:

  因为要找出步行最长距离的奶牛最少走多远,每个奶牛到达挤奶机之前可以经过多条路径,所以我们要先进行一次floyd进行传递闭包,让maps[i][j]为i到j的最短路径。然后二分枚举奶牛的路径最大距离,每次用多重匹配判断是否合法即可。

 #include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std; const int INF = 0x3f3f3f3f;
const int maxn = ;
int maps[maxn][maxn], used[][], link[], vis[];
int mid, low, high, k, c, m;
void floyd (int n)
{
for (int k=; k<=n; k++)
for (int i=; i<=n; i++)
for (int j=; j<=n; j++)
{
maps[i][j] = min (maps[i][j], maps[i][k]+maps[k][j]);
high = max (maps[i][j], high);
low = min (low, maps[i][j]);
}
}
bool Find (int x)
{
for (int i=; i<=k; i++)
{
if (!vis[i] && maps[x][i]<=mid)
{
vis[i] = ;
if (link[i]<m)
{
used[i][link[i] ++] = x;
return true;
}
for (int j=; j<m; j++)
if (Find(used[i][j]))
{
used[i][j] = x;
return true;
}
}
}
return false;
}
bool hungry ()
{
memset (link, , sizeof(link));
for (int i=k+; i<=k+c; i++)
{
memset (vis, , sizeof(vis));
if (!Find(i))
return false;
}
return true;
}
int main ()
{
while (scanf ("%d %d %d", &k, &c, &m) != EOF)
{
int n = k + c;
for (int i=; i<=n; i++)
for (int j=; j<=n; j++)
{
scanf ("%d", &maps[i][j]);
if (maps[i][j] == && i!=j)
maps[i][j] = INF;
}
high = , low = INF;
floyd (n);
int ans;
while (low <= high)
{
mid = (low+high)/;
if (hungry())
{
ans = mid;
high = mid - ;
}
else
low = mid + ;
}
printf ("%d\n", ans);
}
return ;
}

Poj 2112 Optimal Milking (多重匹配+传递闭包+二分)的更多相关文章

  1. POJ 2112 Optimal Milking (Dinic + Floyd + 二分)

    Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K Total Submissions: 19456   Accepted: 6947 ...

  2. POJ 2112 Optimal Milking (二分+最短路径+网络流)

    POJ  2112 Optimal Milking (二分+最短路径+网络流) Optimal Milking Time Limit: 2000MS   Memory Limit: 30000K To ...

  3. POJ 2112 Optimal Milking (二分 + floyd + 网络流)

    POJ 2112 Optimal Milking 链接:http://poj.org/problem?id=2112 题意:农场主John 将他的K(1≤K≤30)个挤奶器运到牧场,在那里有C(1≤C ...

  4. POJ 2112—— Optimal Milking——————【多重匹配、二分枚举答案、floyd预处理】

    Optimal Milking Time Limit:2000MS     Memory Limit:30000KB     64bit IO Format:%I64d & %I64u Sub ...

  5. POJ 2112 Optimal Milking(Floyd+多重匹配+二分枚举)

    题意:有K台挤奶机,C头奶牛,每个挤奶机每天只能为M头奶牛服务,下面给的K+C的矩阵,是形容相互之间的距离,求出来走最远的那头奶牛要走多远   输入数据: 第一行三个数 K, C, M  接下来是   ...

  6. poj 2112 Optimal Milking (二分图匹配的多重匹配)

    Description FJ has moved his K ( <= K <= ) milking machines <= C <= ) cows. A ..K; the c ...

  7. POJ 2112 Optimal Milking (Floyd+二分+最大流)

    [题意]有K台挤奶机,C头奶牛,在奶牛和机器间有一组长度不同的路,每台机器每天最多能为M头奶牛挤奶.现在要寻找一个方案,安排每头奶牛到某台机器挤奶,使得C头奶牛中走过的路径长度的和的最大值最小. 挺好 ...

  8. POJ 2112 Optimal Milking (二分 + 最大流)

    题目大意: 在一个农场里面,有k个挤奶机,编号分别是 1..k,有c头奶牛,编号分别是k+1 .. k+c,每个挤奶机一天最让可以挤m头奶牛的奶,奶牛和挤奶机之间用邻接矩阵给出距离.求让所有奶牛都挤到 ...

  9. POJ 2112: Optimal Milking【二分,网络流】

    题目大意:K台挤奶机,C个奶牛,每台挤奶器可以供M头牛使用,给出奶牛和和机器间的距离矩阵,求所有奶牛走最大距离的最小值 思路:最大距离的最小值,明显提示二分,将最小距离二分之后问题转化成为:K台挤奶机 ...

随机推荐

  1. 从头开始学Android之(一)——— Android架构

    从事Android开发已经两年多了,最近项目上特别清闲,刚开始时在闲暇的时候都不知道干嘛,整天混日子.有一天突然有个以前同学找到我,说要我帮忙做一个Android的需求,就是在后台截屏(涉及到服务以及 ...

  2. CommonTabLayout+ViewPager快速完成APP首页搭建

    款APP开始的时候往往少不了多页面的切换,这就涉及到viewpager的使用,以前往往用Google自带的效果去实现,比较麻烦不说,后面做出来的效果还不如人意. 下面就利用CommonTabLayou ...

  3. mysql innodb插入意向锁

    innodb中有插入意向锁.专门针对insert,假设插入前,该间隙已经由gap锁,那么Insert会申请插入意向锁. 那么这个插入意向锁的作用是什么? 1.为了唤起等待.由于该间隙已经有锁,插入时必 ...

  4. 微信小程序之 Index(仿淘宝分类入口)

    1.逻辑层 index.js //index.js //获取应用实例 const app = getApp() Page({ /** * 页面的初始数据 */ data: { menu: { imgU ...

  5. Selenium系列之--01 简介【转】

    1.selenium 工具组件 1.1 selenium2,也称为selenium webdriver.webdriver原来是另一个自动化测试工具,后与selenium 合并了.webdriver直 ...

  6. Oracle改动字段类型

    因为需求变动.现要将一个类型NUMBER(8,2)的字段类型改为 char. 大体思路例如以下:       将要更改类型的字段名改名以备份.然后加入一个与要更改类型的字段名同名的字段(原字段已经改名 ...

  7. MySQL 高可用架构在业务层面细化分析研究

    相对于传统行业的相对服务时间9x9x6或者9x12x5,由于互联网电子商务以及互联网游戏的实时性,所以服务要求7*24小时,业务架构无论是应用还是数据库,都须要容灾互备.在mysql的体系中,最好通过 ...

  8. Linux 对比 Windows 缺点

      SELinux_百度百科 https://baike.baidu.com/item/SELinux/8865268?fr=aladdin   虽然Linux比起 Windows来说,它的可靠性,稳 ...

  9. Oracle 表的创建 及相关參数

    1. 创建表完整语法 CREATE TABLE [schema.]table (column datatype [, column datatype] - ) [TABLESPACE tablespa ...

  10. (14)javaWeb中的HttpServletResponse类详解

    如果希望了解请求和响应的详细内容,可以看我的“HTTP协议”系列文章 响应体的简单概述: a,响应报文结构: b,常见的状态码,返回服务器处理的结果: c,常见的响应头: HttpServletRes ...