一、高阶函数

高阶函数英文叫Higher-order function。什么是高阶函数?我们以实际代码为例子,一步一步深入概念。

变量可以指向函数

结论:函数本身也可以赋值给变量,即:变量可以指向函数。

如果一个变量指向了一个函数,那么,可否通过该变量来调用这个函数?用代码验证一下:

>>> f = abs
>>> f(-10)
10

成功!说明变量f现在已经指向了abs函数本身。直接调用abs()函数和调用变量f()完全相同。

传入函数

既然变量可以指向函数,函数的参数能接收变量,那么一个函数就可以接收另一个函数作为参数,这种函数就称之为高阶函数。

一个最简单的高阶函数:

def add(x, y, f):
return f(x) + f(y)

当我们调用add(-5, 6, abs)时,参数x,y和f分别接收-5,6和abs,根据函数定义,我们可以推导计算过程为:

x = -5
y = 6
f = abs
f(x) + f(y) ==> abs(-5) + abs(6) ==> 11
return 11

1.Map/Reduce

我们先看map。map()函数接收两个参数,一个是函数,一个是Iterable,map将传入的函数依次作用到序列的每个元素,并把结果作为新的Iterator返回。

>>> def f(x):
... return x * x
...
>>> r = map(f, [1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> list(r)
[1, 4, 9, 16, 25, 36, 49, 64, 81]

map()传入的第一个参数是f,即函数对象本身。由于结果r是一个Iterator,Iterator是惰性序列,因此通过list()函数让它把整个序列都计算出来并返回一个list。

map()作为高阶函数,事实上它把运算规则抽象了,因此,我们不但可以计算简单的f(x)=x2,还可以计算任意复杂的函数,比如,把这个list所有数字转为字符串:

>>> list(map(str, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
['1', '2', '3', '4', '5', '6', '7', '8', '9']

再看reduce的用法。reduce把一个函数作用在一个序列[x1, x2, x3, …]上,这个函数必须接收两个参数,reduce把结果继续和序列的下一个元素做累积计算,其效果就是:

reduce(f, [x1, x2, x3, x4]) = f(f(f(x1, x2), x3), x4)

如果考虑到字符串str也是一个序列,对上面的例子稍加改动,配合map(),我们就可以写出把str转换为int的函数:

>>> from functools import reduce
>>> def fn(x, y):
... return x * 10 + y
...
>>> def char2num(s):
... digits = {'0': 0, '1': 1, '2': 2, '3': 3, '4': 4, '5': 5, '6': 6, '7': 7, '8': 8, '9': 9}
... return digits[s]
...
>>> reduce(fn, map(char2num, '13579'))
13579

2.filter

Python内建的filter()函数用于过滤序列。

和map()类似,filter()也接收一个函数和一个序列。和map()不同的是,filter()把传入的函数依次作用于每个元素,然后根据返回值是True还是False决定保留还是丢弃该元素。

例如,在一个list中,删掉偶数,只保留奇数,可以这么写:

def is_odd(n):
return n % 2 == 1 list(filter(is_odd, [1, 2, 4, 5, 6, 9, 10, 15]))
# 结果: [1, 5, 9, 15]

把一个序列中的空字符串删掉,可以这么写:

def not_empty(s):
return s and s.strip() list(filter(not_empty, ['A', '', 'B', None, 'C', ' ']))
# 结果: ['A', 'B', 'C']

可见用filter()这个高阶函数,关键在于正确实现一个“筛选”函数。

注意到filter()函数返回的是一个Iterator,也就是一个惰性序列,所以要强迫filter()完成计算结果,需要用list()函数获得所有结果并返回list。

用filter求素数

计算素数的一个方法是埃氏筛法,它的算法理解起来非常简单:

首先,列出从2开始的所有自然数,构造一个序列:

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, …

取序列的第一个数2,它一定是素数,然后用2把序列的2的倍数筛掉:

3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, …

取新序列的第一个数3,它一定是素数,然后用3把序列的3的倍数筛掉:

5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, …

取新序列的第一个数5,然后用5把序列的5的倍数筛掉:

7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, …

不断筛下去,就可以得到所有的素数。

用Python来实现这个算法,可以先构造一个从3开始的奇数序列:

def _odd_iter():
n = 1
while True:
n = n + 2
yield n

注意这是一个生成器,并且是一个无限序列。

一个带有 yield 的函数就是一个 generator,它和普通函数不同,生成一个 generator 看起来像函数调用,但不会执行任何函数代码,直到对其调用 next()(在 for 循环中会自动调用 next())才开始执行。虽然执行流程仍按函数的流程执行,但每执行到一个 yield 语句就会中断,并返回一个迭代值,下次执行时从 yield 的下一个语句继续执行。看起来就好像一个函数在正常执行的过程中被 yield 中断了数次,每次中断都会通过 yield 返回当前的迭代值。

然后定义一个筛选函数:

def _not_divisible(n):
return lambda x: x % n > 0

最后,定义一个生成器,不断返回下一个素数:

def primes():
yield 2
it = _odd_iter() # 初始序列
while True:
n = next(it) # 返回序列的第一个数
yield n
it = filter(_not_divisible(n), it) # 构造新序列

这个生成器先返回第一个素数2,然后,利用filter()不断产生筛选后的新的序列。

由于primes()也是一个无限序列,所以调用时需要设置一个退出循环的条件:

# 打印1000以内的素数:
for n in primes():
if n < 1000:
print(n)
else:
break

3.sorted

排序算法

排序也是在程序中经常用到的算法。无论使用冒泡排序还是快速排序,排序的核心是比较两个元素的大小。如果是数字,我们可以直接比较,但如果是字符串或者两个dict呢?直接比较数学上的大小是没有意义的,因此,比较的过程必须通过函数抽象出来。

Python内置的sorted()函数就可以对list进行排序:

>>> sorted([36, 5, -12, 9, -21])
[-21, -12, 5, 9, 36]

此外,sorted()函数也是一个高阶函数,它还可以接收一个key函数来实现自定义的排序,例如按绝对值大小排序:

>>> sorted([36, 5, -12, 9, -21], key=abs)
[5, 9, -12, -21, 36]

key指定的函数将作用于list的每一个元素上,并根据key函数返回的结果进行排序。对比原始的list和经过key=abs处理过的list:

list = [36, 5, -12, 9, -21]

keys = [36, 5, 12, 9, 21]

我们再看一个字符串排序的例子:

>>> sorted(['bob', 'about', 'Zoo', 'Credit'])
['Credit', 'Zoo', 'about', 'bob']

默认情况下,对字符串排序,是按照ASCII的大小比较的,由于’Z’ < ‘a’,结果,大写字母Z会排在小写字母a的前面。

现在,我们提出排序应该忽略大小写,按照字母序排序。要实现这个算法,不必对现有代码大加改动,只要我们能用一个key函数把字符串映射为忽略大小写排序即可。忽略大小写来比较两个字符串,实际上就是先把字符串都变成大写(或者都变成小写),再比较。

这样,我们给sorted传入key函数,即可实现忽略大小写的排序:

>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower)
['about', 'bob', 'Credit', 'Zoo']

要进行反向排序,不必改动key函数,可以传入第三个参数reverse=True:

>>> sorted(['bob', 'about', 'Zoo', 'Credit'], key=str.lower, reverse=True)
['Zoo', 'Credit', 'bob', 'about']

二、返回函数

函数作为返回值

高阶函数除了可以接受函数作为参数外,还可以把函数作为结果值返回。

我们来实现一个可变参数的求和。通常情况下,求和的函数是这样定义的:

def calc_sum(*args):
ax = 0
for n in args:
ax = ax + n
return ax

但是,如果不需要立刻求和,而是在后面的代码中,根据需要再计算怎么办?可以不返回求和的结果,而是返回求和的函数:

def lazy_sum(*args):
def sum():
ax = 0
for n in args:
ax = ax + n
return ax
return sum

当我们调用lazy_sum()时,返回的并不是求和结果,而是求和函数:

>>> f = lazy_sum(1, 3, 5, 7, 9)
>>> f
<function lazy_sum.<locals>.sum at 0x101c6ed90>

闭包

注意到返回的函数在其定义内部引用了局部变量args,所以,当一个函数返回了一个函数后,其内部的局部变量还被新函数引用,所以,闭包用起来简单,实现起来可不容易。

返回闭包时牢记一点:返回函数不要引用任何循环变量,或者后续会发生变化的变量。

如果一定要引用循环变量怎么办?方法是再创建一个函数,用该函数的参数绑定循环变量当前的值,无论该循环变量后续如何更改,已绑定到函数参数的值不变:

def count():
def f(j):
def g():
return j*j
return g
fs = []
for i in range(1, 4):
fs.append(f(i)) # f(i)立刻被执行,因此i的当前值被传入f()
return fs

三、匿名函数

在Python中,对匿名函数提供了有限支持。还是以map()函数为例,计算f(x)=x2时,除了定义一个f(x)的函数外,还可以直接传入匿名函数:

>>> list(map(lambda x: x * x, [1, 2, 3, 4, 5, 6, 7, 8, 9]))
[1, 4, 9, 16, 25, 36, 49, 64, 81]

关键字lambda表示匿名函数,冒号前面的x表示函数参数。

匿名函数有个限制,就是只能有一个表达式,不用写return,返回值就是该表达式的结果。

用匿名函数有个好处,因为函数没有名字,不必担心函数名冲突。此外,匿名函数也是一个函数对象,也可以把匿名函数赋值给一个变量,再利用变量来调用该函数:

>>> f = lambda x: x * x
>>> f
<function <lambda> at 0x101c6ef28>
>>> f(5)
25

同样,也可以把匿名函数作为返回值返回,比如:

def build(x, y):
return lambda: x * x + y * y

四、装饰器

在面向对象(OOP)的设计模式中,decorator被称为装饰模式。OOP的装饰模式需要通过继承和组合来实现,而Python除了能支持OOP的decorator外,直接从语法层次支持decorator。Python的decorator可以用函数实现,也可以用类实现。

decorator可以增强函数的功能,定义起来虽然有点复杂,但使用起来非常灵活和方便。

五、偏函数

Python的functools模块提供了很多有用的功能,其中一个就是偏函数(Partial function)。要注意,这里的偏函数和数学意义上的偏函数不一样。

functools.partial就是帮助我们创建一个偏函数的,不需要我们自己定义int2(),可以直接使用下面的代码创建一个新的函数int2:

>>> import functools
>>> int2 = functools.partial(int, base=2)
>>> int2('1000000')
64
>>> int2('1010101')
85

所以,简单总结functools.partial的作用就是,把一个函数的某些参数给固定住(也就是设置默认值),返回一个新的函数,调用这个新函数会更简单。

(三)python函数式编程的更多相关文章

  1. Python函数式编程:从入门到走火入魔

    一行代码显示"爱心" >>> print]+(y*-)**-(x**(y*<= ,)]),-,-)]) Python函数式编程:从入门到走火入魔 # @fi ...

  2. python函数式编程,列表生成式

    1.python 中常见的集中存储数据的结构: 列表 集合 字典 元组 字符串 双队列 堆 其中最常见的就是列表,字典. 2.下面讲一些运用循环获取字典列表的元素 >>> dic={ ...

  3. (转)Python函数式编程——map()、reduce()

    转自:http://www.jianshu.com/p/7fe3408e6048 1.map(func,seq1[,seq2...]) Python 函数式编程中的map()函数是将func作用于se ...

  4. python 函数式编程学习笔记

    函数基础 一个函数就是将一些语句集合在一起的部件,它们能够不止一次地在程序中运行.函数的主要作用: 最大化的代码重用和最小化代码冗余 流程的分解 一般地,函数讲的流程是:告诉你怎样去做某事,而不是让你 ...

  5. python 函数式编程:高阶函数,map/reduce

    python 函数式编程:高阶函数,map/reduce #函数式编程 #函数式编程一个特点就是,允许把函数本身作为参数传入另一个函数,还允许返回一个函数 #(一)高阶函数 f=abs f print ...

  6. Python函数式编程(进阶2)

    转载请标明出处: http://www.cnblogs.com/why168888/p/6411915.html 本文出自:[Edwin博客园] Python函数式编程(进阶2) 1. python把 ...

  7. Python函数式编程——map()、reduce()

    文章来源:http://www.pythoner.com/46.html 提起map和reduce想必大家并不陌生,Google公司2003年提出了一个名为MapReduce的编程模型[1],用于处理 ...

  8. python函数式编程之返回函数、匿名函数、装饰器、偏函数学习

    python函数式编程之返回函数 高阶函数处理可以接受函数作为参数外,还可以把函数作为结果值返回. 函数作为返回值 def laxy_sum(*args): def sum(): ax = 0; fo ...

  9. Python函数式编程简介

    参考原文 廖雪峰Python函数式编程 函数 函数是Python内建支持的一种封装,我们通过把大段代码拆成函数,通过一层一层的函数调用,就可以把复杂任务分解成简单的任务,这种分解可以称之为面向过程的程 ...

  10. python笔记三:函数式编程

    1.概念: 函数式编程就是一种抽象程度很http://i.cnblogs.com/EditPosts.aspx?opt=1高的编程范式,纯粹的函数式编程语言编写的函数没有变量,因此,任意一个函数,只要 ...

随机推荐

  1. [NPM] Create a new project using the npm init <initializer> command

    Historically, the npm init command was solely use to create a new package.json file. However, as of ...

  2. boost的内存管理

    smart_ptr raii ( Resource Acquisition Is Initialization ) 智能指针系列的都统称为smart_ptr.包含c++98标准的auto_ptr 智能 ...

  3. WPF的WebBrowser屏蔽弹出脚本错误窗体

    WPF自带的WebBrowser在訪问一些有问题的网页时常常跳出非常多提示脚本错误的窗体, 可是WPF没有自带屏蔽这些窗体的方法或属性. 所以网上找来一使用反射的方法来屏蔽弹出脚本错误窗体的方法, 非 ...

  4. C/C++ scanf 函数中%s 和%c 的简单差别

    首先声明:在键盘中敲入字符后,字符会首先保存在键盘缓冲区中供scanf函数读取(scanf.getchar等函数是读取缓冲区,getch函数是读取的控制台信息,即为直接从键盘读取).另外特别注意键盘上 ...

  5. struts2多图片上传实例【转】

    原文地址:http://blog.csdn.net/java_cxrs/article/details/6004144 描述: 通过struts2实现多图片上传. 我使用的版本是2.2.1,使用的包有 ...

  6. Ubuntu x86 64 settup nginx rtmp server

    常常搭建nginxserver,可是好像每次的情况都不同,这次具体记录这个过程: 平台:unbutu 10.04 内核:2.6.32-33-generic 1, 编译环境搭建. sudo apt-ge ...

  7. netstat --numeric-ports -a -t -p 排查hadoop主从节点是否建立通信

    tcp  通信 [root@hadoop2 logs]# netstat --numeric-ports -a -tActive Internet connections (servers and e ...

  8. 内存充足,但是为什么hadoop3无法启动nodemanager

    [root@hadoop3 hadoop]# xloStarting namenodes on [hadoop3]上一次登录:三 12月 27 16:06:01 CST 2017pts/24 上Sta ...

  9. Codeforces Round #261 (Div. 2)——Pashmak and Graph

    题目链接 题意: n个点.m个边的有向图.每条边有一个权值,求一条最长的路径,使得路径上边值严格递增.输出路径长度 )) 分析: 由于路径上会有反复点,而边不会反复.所以最開始想的是以边为状态进行DP ...

  10. 迭代器-iteration

    class CoffrrIterator implements Iterator<Coffee> { int cunt = size; public boolean hasNext() { ...