题目:

BZOJ1487

分析:

题目中给定的图一定是一棵仙人掌(每条边最多属于一个环),证明如下:

先考虑单独一个岛的情况。第一,一个岛一定是一张「弦图」,即任意一个大小超过 3 的环都至少有 1 条弦。否则,这个环上不相邻的两点就不存在公共朋友,不符合「有一个公共朋友」。

第二,不存在有一条边被超过一个三元环包含。否则,这些三元环上与这条边相对的顶点都与这条边的两端点相邻,不符合「只有一个公共朋友」。

所以,每条边最多属于一个三元环。而由于大小超过 3 的环的弦一定存在于至少两个三元环中,所以不存在大小超过 3 的环。所以,在同一个岛中,每条边最多属于一个环,即为一个仙人掌。

现在,在每个岛(仙人掌)中选出一点与特定的另外两点相连,形成一个环。显然,每条新边都不可能和原本的仙人掌森林中的边形成环,所以这些新边在且仅在这个新环中。综上所述,原图是一个仙人掌。

那么这就是一个仙人掌 DP 的板子了(雾) 。设 \(f[i][0/1]\) 表示点 \(i\) 没选 / 选了时它的「子树」(见下文)内的最大权值。如果是一棵树,那么这就是一个非常简单的 DP (不会做的自觉面壁)。

下面这段比较难理解,不理解的话可以自己画个图手跑 Tarjan 。

考虑 Tarjan 求点双联通分量的过程。定义一个环的「根」为这个环上 dfs 序最小的点(就是建圆方树的时候把整个点双联通分量加进圆方树那个点 —— 只是以此为例说明,并不说明要建圆方树,下同)。如果一个环上所有的点的深度都大于等于某个点,那么这个环就在这个点的「子树」中,否则不算。即,一个环上只有这个环的「根」的子树包含这个环,这个环上被选中的点的权值在环上只算进根的 \(f\) 值。

当回溯到环的「根」时(就是把整个点双联通分量插入圆方树的时候),环上其他点的 \(f\) 值都已经计算完毕(再次强调,这些值都与这个环上的除了自己以外的点无关)。现在问题变成了:有一个环,选环上点 \(i\) 的权值是 \(f[i][1]\),不选的权值是 \(f[i][0]\) ,不能选相邻点,求最大能获得的权值。特别地,根的权值同样直接就是当前根的 \(f\) 值,因为要考虑这个根已经处理过的其他子树的权值。此处不理解的话参考树的做法。这个问题可以设 \(g[i][0/1][0/1]\) 表示当前考虑到第 \(i\) 个点,第一个点没选 / 选了,第 \(i\) 个点没选 / 选了。这个不会做的请继续面壁。

好像就这么多了?完结撒花~

代码:

#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cctype>
using namespace std; namespace zyt
{
template<typename T>
inline bool read(T &x)
{
char c;
bool f = false;
x = 0;
do
c = getchar();
while (c != EOF && c != '-' && !isdigit(c));
if (c == EOF)
return false;
if (c == '-')
f = true, c = getchar();
do
x = x * 10 + c - '0', c = getchar();
while (isdigit(c));
if (f)
x = -x;
return true;
}
template<typename T>
inline void write(T x)
{
static char buf[20];
char *pos = buf;
if (x < 0)
putchar('-'), x = -x;
do
*pos++ = x % 10 + '0';
while (x /= 10);
while (pos > buf)
putchar(*--pos);
}
const int N = 1e5 + 10, M = 2e5 + 10, INF = 0x3f3f3f3f;
int n, m, head[N], w[N], ecnt;
struct edge
{
int to, next;
}e[M << 1];
void add(const int a, const int b)
{
e[ecnt] = (edge){b, head[a]}, head[a] = ecnt++;
}
int dfn[N], low[N], dfncnt, f[N][2];
bool vis[M << 1];
void Tarjan(const int u, const int from)
{
static int sta[M << 1], top;
dfn[u] = low[u] = ++dfncnt;
f[u][0] = 0, f[u][1] = w[u];
for (int i = head[u]; ~i; i = e[i].next)
{
int v = e[i].to;
if (vis[i] || (i ^ 1) == from)
continue;
sta[top++] = i;
if (dfn[v])
low[u] = min(low[u], dfn[v]);
else
{
Tarjan(v, i);
low[u] = min(low[u], low[v]);
if (low[v] >= dfn[u])
{
if (sta[top - 1] == i)
{
f[u][0] += f[v][1], f[u][1] += f[v][0];
vis[sta[top - 1]] = vis[sta[top - 1] ^ 1] = true;
--top;
}
else
{
static int buf[N];
int cnt = 0, t;
do
{
t = sta[--top];
vis[t] = vis[t ^ 1] = true;
buf[cnt++] = e[t].to;
}
while (t != i);
static int dp[N][2][2];
dp[0][0][0] = dp[0][0][1] = f[u][0];
dp[0][1][0] = -INF, dp[0][1][1] = f[u][1];
for (int i = 1; i < cnt; i++)
for (int j = 0; j < 2; j++)
{
dp[i][j][0] = dp[i - 1][j][1] + f[buf[i]][0];
dp[i][j][1] = dp[i - 1][j][0] + f[buf[i]][1];
dp[i][j][1] = max(dp[i][j][1], dp[i][j][0]);
}
f[u][0] = dp[cnt - 1][0][1], f[u][1] = dp[cnt - 1][1][0];
}
}
}
}
f[u][1] = max(f[u][1], f[u][0]);
}
int work()
{
read(n), read(m);
memset(head, -1, sizeof(int[n + 1]));
for (int i = 0; i < m; i++)
{
int a, b;
read(a), read(b);
add(a, b), add(b, a);
}
for (int i = 1; i <= n; i++)
read(w[i]);
Tarjan(1, -1);
write(max(f[1][0], f[1][1]));
return 0;
}
}
int main()
{
freopen("1487.in", "r", stdin);
return zyt::work();
}

【BZOJ1487】[HNOI2009]无归岛(仙人掌 DP)的更多相关文章

  1. bzoj1487 [HNOI2009]无归岛

    Description Neverland是个神奇的地方,它由一些岛屿环形排列组成,每个岛上都生活着之中与众不同的物种.但是这些物种都有一个共同的生活习性:对于同一个岛 上的任意两个生物,他们有且仅有 ...

  2. BZOJ1487 [HNOI2009]无归岛 【仙人掌dp】

    题目链接 BZOJ1487 题解 就是一个简单的仙人掌最大权独立集 还是不会圆方树 老老实实地树形Dp + 环处理 #include<iostream> #include<cstdi ...

  3. 2019.02.07 bzoj1487: [HNOI2009]无归岛(仙人掌+树形dp)

    传送门 人脑转化条件过后的题意简述:给你一个仙人掌求最大带权独立集. 思路:跟这题没啥变化好吗?再写一遍加深记忆吧. 就是把每个环提出来分别枚举环在图中的最高点选还是不选分别dpdpdp一下即可,时间 ...

  4. 【BZOJ1487】[HNOI2009]无归岛(动态规划)

    [BZOJ1487][HNOI2009]无归岛(动态规划) 题面 BZOJ 洛谷 题解 哪来的这么多废话啊,直接说一个仙人掌得了. 然后就是要你求仙人掌最大独立集了.(随便蒯份原来的代码就过了) 不过 ...

  5. P4410 [HNOI2009]无归岛

    P4410 [HNOI2009]无归岛 显然这还是一个仙人掌图 对于同一个岛上的任意两个生物,他们有且仅有一个公共朋友 要求求最大独立集,和树形dp一样,遇到环时单独提出来处理一下就好了 #inclu ...

  6. 【刷题】BZOJ 1487 [HNOI2009]无归岛

    Description Neverland是个神奇的地方,它由一些岛屿环形排列组成,每个岛上都生活着之中与众不同的物种.但是这些物种都有一个共同的生活习性:对于同一个岛上的任意两个生物,他们有且仅有一 ...

  7. [HNOI2009]无归岛

    Description Neverland是个神奇的地方,它由一些岛屿环形排列组成,每个岛上都生活着之中与众不同的物种.但是这些物种都有一个共同的生活习性:对于同一个岛上的任意两个生物,他们有且仅有一 ...

  8. 【题解】HNOI2009无归岛

    这题真的是无语了,在哪个岛上根本就没有任何的用处……不过我是画了下图,感受到一定是仙人掌,并不会证.有谁会证的求解…… 如果当做仙人掌来做确实十分的简单.只要像没有上司的舞会一样树形dp就好了,遇到环 ...

  9. Luogu-4410 [HNOI2009]无归岛

    裸的仙人掌最大独立子集,结果一个zz的错误让我调了好久... \(-inf\)开始设为\(0x7fffffff\)结果\(A_i\)有负数一加就炸了 #include<cstdio> #i ...

随机推荐

  1. 我被C++开发欺辱的岁月

    前言 人被压迫了,为什么不斗争?——鲁迅 作为一个C#开发者,我经历了,也见证了很多同行饱受C++开发的歧视和欺辱. 而且,这种行为,现在依然持续的发生在C#开发者的身上,就目前为止,绝大部分C#开发 ...

  2. HTML5 <template>标签元素简介

    一.HTML5 template元素初面 <template>元素,基本上可以确定是2013年才出现的.干嘛用的呢,顾名思意,就是用来声明是“模板元素”. 目前,我们在HTML中嵌入模板H ...

  3. influxDB系列(二)

    来源于我在一个influxDB的qq交流群中的提问, 然后有个人 提了一个问题---->触发了我的思考!! :) 哈哈 自己的每一次说出一个回答,都是一次新的思考,也都进行了一些查阅资料,思考, ...

  4. Duplicate property mapping of contactPhone found in

    启动的时候报Duplicate property mapping of contactPhone found in com....的错误,是因为在建立实体对象的时候,有字段重复了,有的是继承了父类的字 ...

  5. Hadoop架构设计、执行原理具体解释

    1.Map-Reduce的逻辑过程 如果我们须要处理一批有关天气的数据.其格式例如以下: 依照ASCII码存储.每行一条记录 每一行字符从0開始计数,第15个到第18个字符为年 第25个到第29个字符 ...

  6. 汉诺塔 Tower of Hanoi

    假设柱子标为A,B.C.要由A搬至C,在仅仅有一个盘子时,就将它直接搬至C:当有两个盘子,就将B作为辅助柱.假设盘数超过2个.将第二个下面的盘子遮起来,就非常easy了.每次处理两个盘子,也就是:A- ...

  7. LoadRunner中存储表格参数------关联数组

    主要用到 web_reg_save_param_ex函数("Scope=All",), sprintf( CProdNo,"{CProdNo_%d}",i ); ...

  8. git 删除目录

    1. 查看本地已经被删除的文件 2. 删除 目录以及目录下的文件 [root@test01 h2_mopub_replace]# git rm ../test_code_driver -r 3. [r ...

  9. mac 使用命令行,对远程服务器进行文件更新

    目的:更新服务器文件A 1.远程传输文件 A.zip 在本地A文件的父级文件夹下执行 scp ./A.zip 远程服务器用户名@远程服务器IP:/要放置的文件夹目录/ 然后要输入服务器登陆密码,进行文 ...

  10. Koa2学习(七)使用cookie

    Koa2学习(七)使用cookie Koa2 的 ctx 上下文对象直接提供了cookie的操作方法set和get ctx.cookies.set(name, value, [options])在上下 ...