题目链接:http://poj.org/problem?id=2253

Frogger
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 49409   Accepted: 15729

Description

Freddy Frog is sitting on a stone in the middle of a lake. Suddenly he notices Fiona Frog who is sitting on another stone. He plans to visit her, but since the water is dirty and full of tourists' sunscreen, he wants to avoid swimming and instead reach her by jumping. 
Unfortunately Fiona's stone is out of his jump range. Therefore Freddy considers to use other stones as intermediate stops and reach her by a sequence of several small jumps. 
To execute a given sequence of jumps, a frog's jump range obviously must be at least as long as the longest jump occuring in the sequence. 
The frog distance (humans also call it minimax distance) between two stones therefore is defined as the minimum necessary jump range over all possible paths between the two stones.

You are given the coordinates of Freddy's stone, Fiona's stone and all other stones in the lake. Your job is to compute the frog distance between Freddy's and Fiona's stone.

Input

The input will contain one or more test cases. The first line of each test case will contain the number of stones n (2<=n<=200). The next n lines each contain two integers xi,yi (0 <= xi,yi <= 1000) representing the coordinates of stone #i. Stone #1 is Freddy's stone, stone #2 is Fiona's stone, the other n-2 stones are unoccupied. There's a blank line following each test case. Input is terminated by a value of zero (0) for n.

Output

For each test case, print a line saying "Scenario #x" and a line saying "Frog Distance = y" where x is replaced by the test case number (they are numbered from 1) and y is replaced by the appropriate real number, printed to three decimals. Put a blank line after each test case, even after the last one.

Sample Input

2
0 0
3 4 3
17 4
19 4
18 5 0

Sample Output

Scenario #1
Frog Distance = 5.000 Scenario #2
Frog Distance = 1.414

Source

 
 
 
题解:
1.最短路的变形:把dis[i]从原来的记录最短距离 变为 记录不同路径上最大边权中的最小值。
2.利用dijkstra算法时,每次松弛都是选取dis的最小值。
 
 
 
代码如下:
 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
#define rep(i,a,n) for(int (i) = a; (i)<=(n); (i)++)
#define ms(a,b) memset((a),(b),sizeof((a)))
using namespace std;
typedef long long LL;
const double EPS = 1e-;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e3+; int n; struct edge
{
double w;
int to, next;
}edge[MAXN*MAXN];
int cnt, head[MAXN]; void addedge(int u, int v, double w)
{
edge[cnt].to = v;
edge[cnt].w = w;
edge[cnt].next = head[u];
head[u] = cnt++;
} void init()
{
cnt = ;
memset(head, -, sizeof(head));
} double dis[MAXN];
bool vis[MAXN];
void dijkstra(int st)
{
memset(vis, , sizeof(vis));
for(int i = ; i<=n; i++)
dis[i] = (i==st?:INF); for(int i = ; i<=n; i++)
{
int k;
double minn = INF;
for(int j = ; j<=n; j++)
if(!vis[j] && dis[j]<minn)
minn = dis[k=j]; vis[k] = ;
for(int j = head[k]; j!=-; j = edge[j].next) //dis[i]为经过i点的路径中边权最大值的最小值。
if(!vis[edge[j].to])
dis[edge[j].to] = min(dis[edge[j].to], max(dis[k], edge[j].w) );
}
} int x[MAXN], y[MAXN];
int main()
{
int kase = ;
while(scanf("%d", &n) && n)
{
init();
for(int i = ; i<=n; i++)
scanf("%d%d", &x[i], &y[i]);
for(int i = ; i<=n; i++)
for(int j = ; j<=n; j++)
addedge(i, j, sqrt( (x[i]-x[j])*(x[i]-x[j])+(y[i]-y[j])*(y[i]-y[j])) ); dijkstra();
printf("Scenario #%d\n", ++kase);
printf("Frog Distance = %.3f\n\n", dis[]);
}
}

POJ2253 Frogger —— 最短路变形的更多相关文章

  1. POJ 2253 Frogger ( 最短路变形 || 最小生成树 )

    题意 : 给出二维平面上 N 个点,前两个点为起点和终点,问你从起点到终点的所有路径中拥有最短两点间距是多少. 分析 : ① 考虑最小生成树中 Kruskal 算法,在建树的过程中贪心的从最小的边一个 ...

  2. B - Frogger 最短路变形('最长路'求'最短路','最短路'求'最长路')

    http://poj.org/problem?id=2253 题目大意: 有一只可怜没人爱的小青蛙,打算去找他的女神青蛙姐姐,但是池塘水路不能走,所以只能通过蹦跶的形式到达目的地,问你从小青蛙到青蛙姐 ...

  3. POJ 2253 Frogger -- 最短路变形

    这题的坑点在POJ输出double不能用%.lf而要用%.f...真是神坑. 题意:给出一个无向图,求节点1到2之间的最大边的边权的最小值. 算法:Dijkstra 题目每次选择权值最小的边进行延伸访 ...

  4. POJ2253 frogger 最短路 floyd

    #include<iostream>#include<algorithm>#include<stdio.h>#include<string.h>#inc ...

  5. POJ-2253.Frogger.(求每条路径中最大值的最小值,最短路变形)

    做到了这个题,感觉网上的博客是真的水,只有kuangbin大神一句话就点醒了我,所以我写这篇博客是为了让最短路的入门者尽快脱坑...... 本题思路:本题是最短路的变形,要求出最短路中的最大跳跃距离, ...

  6. POJ 3635 - Full Tank? - [最短路变形][手写二叉堆优化Dijkstra][配对堆优化Dijkstra]

    题目链接:http://poj.org/problem?id=3635 题意题解等均参考:POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]. 一些口胡: ...

  7. POJ 3635 - Full Tank? - [最短路变形][优先队列优化Dijkstra]

    题目链接:http://poj.org/problem?id=3635 Description After going through the receipts from your car trip ...

  8. POJ-1797Heavy Transportation,最短路变形,用dijkstra稍加修改就可以了;

    Heavy Transportation Time Limit: 3000MS   Memory Limit: 30000K          Description Background  Hugo ...

  9. HDOJ find the safest road 1596【最短路变形】

    find the safest road Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Ot ...

随机推荐

  1. Virtual Box 安装过程(卸载Vmware后)

    VirtualBox安装前的操作:(或许某些操作不一定有用,但是我是这么做下来的,最后也安装成功了) 步骤一:停止之前安装的vmware的所有服务(如果之前没有安装过虚拟机软件,无需做此操作)VMwa ...

  2. 使用putty上传下载文件(pscp)

    putty作为ssh工具开源免费,简单易用.可是如何使用它来上传和下载文件呢?答案在于pscp. pscp下载地址:http://www.chiark.greenend.org.uk/~sgtatha ...

  3. Snoop resynchronization mechanism to preserve read ordering

    A processor employing a post-cache (LS2) buffer. Loads are stored into the LS2buffer after probing t ...

  4. FastDFS上传/下载过程[转载-经典图列]

    FastDFS上传/下载过程: 首先客户端 client 发起对 FastDFS 的文件传输动作,是通过连接到某一台 Tracker Server 的指定端口来实现的,Tracker Server 根 ...

  5. Scrapy学习-3-Request回调巧用

    基于twisted的异步回调 使得页面爬取有阶段性和连续性 from scrapy.http import Request from urllib import parse def parse(sel ...

  6. VirtualBox 5.0.10 中 Fedora 23 在安装了增强工具后无法自动调节虚拟机分辨率的问题(改)

    VirtualBox 5.0.10 中安装 Fedora 23,即使在安装了增强工具后,仍然会发现虚拟机无法根据 VirtualBox 的运行窗口大小自动进行分辨率调节.究其原因,主要是因为 Fedo ...

  7. Codeforces Round #512 (Div. 2, based on Technocup 2019 Elimination Round 1) E. Vasya and Good Sequences

    题目链接 官网题解写的好清楚,和昨晚Aguin说的一模一样…… 这题只和每个数1的个数有关,设每个数1的个数的数组为$b$,就是首先一段如果是好的,要满足两个条件: 1.这一段$b$数组和为偶数,因为 ...

  8. MySql的架构和历史

    1.1.mysql的逻辑架构 架构为如下: 存储引擎:负责数据的储存和提取,供了几十个API供服务层进行调用.各个存储引擎之间不会进行交互,只是供服务层进行调用.事务控制和锁的管理也是在存储引擎里面进 ...

  9. ssh的安装和使用

    1.ssh的安装 服务器端:sudo apt-get install openssh-serve 客户端:sudo apt-get install openssh-client 2.ssh的操作 查看 ...

  10. Maven学习使用Nexus搭建Maven私服

    原文:http://www.cnblogs.com/quanyongan/archive/2013/04/24/3037589.html 为什么要搭建nexus私服,原因很简单,有些公司都不提供外网给 ...