2277: [Poi2011]Strongbox

Time Limit: 60 Sec  Memory Limit: 32 MB
Submit: 498  Solved: 218
[Submit][Status][Discuss]

Description

Byteasar is a famous safe-cracker, who renounced his criminal activity and got into testing and certifying anti-burglary devices. He has just received a new kind of strongbox for tests: a combinatorial safe. A combinatorial safe is something different from a combination safe, even though it is opened with a rotary dial. The dial can be set in different positions, numbered from 0 to n-1. Setting the dial in some of these positions opens the safe, while in others it does not. And here is the combinatorial property, from which the name comes from: if x and y are opening positions, then so is (x+y) mod n too; note that is holds for x=y as well.
Byteasar tried k different positions of the dial: m1,m2….mk. The positions M1,M 2….Mk-1 did not open the safe, only the last position Mk did. Byteasar is already tired from checking these K positions and has thus absolutely no intention of trying the remaining ones. He would like to know however, based on what he already knows about the positions he tried, what is the maximum possible number of positions that open the safe. Help him by writing an appropriate program!

有一个密码箱,0到n-1中的某些整数是它的密码。
且满足,如果a和b都是它的密码,那么(a+b)%n也是它的密码(a,b可以相等)
某人试了k次密码,前k-1次都失败了,最后一次成功了。
问:该密码箱最多有多少不同的密码。

Input

The first line of the standard input gives two integers N and k, separated by a single space, (1<=K<=250000,k<=N<=10^14), The second line holds K different integers, also separated by single spaces, m1,m2….mk, 0<=Mi<N. You can assume that the input data correspond to a certain combinatorial safe that complies with the description above.
In tests worth approximately 70% of the points it holds that k<=1000. In some of those tests, worth approximately 20% of the points, the following conditions hold in addition: N< 10 ^8 and K<=100.

第一行n,k
下面一行k个整数,表示每次试的密码
保证存在合法解

1<=k<=250000 k<=n<=10^14

Output

Your program should print out to the first and only line of the standard output a single integer: the maximum number of the dial's positions that can open the safe.

一行,表示结果

Sample Input

42 5
28 31 10 38 24

Sample Output

14
分析:比较难的一道数学题.有两个结论:1.如果x是密码,那么gcd(x,n)也是密码. 2.如果x,y是密码,那么gcd(x,y)也是密码.根据这两个结论就能很轻松地解决本题了.
      先来证明第一个结论:构造二元一次不定方程x*k - n*c = gcd(x,n),这个方程是一定有解的,也就是说一定存在一个 k使得x*k%n = gcd(x,n).而x是密码,(x+x)%n也是密码,所以k*x%n也是密码,那么gcd(x,n)就是密码.x就是题目中告诉的a[k].
      再来证明第二个结论:gcd(x,y) = a*x + b*y,a,b有可能小于0.根据结论一可以推出
(p*x + q*y)%n是密码(p,q ≥ 0). 由a*x + b*y ≡ gcd(x,y)(mod n),变形一下可以得到:
a*x + b*y ≡ a*x + b*y + p*n*x + q*n*y(mod n) --> (a + p*n) * x + (b + q*n) * y ≡ gcd(x,y)(mod n).根据假设,((a + p*n) * x + (b + q*n) * y) % n是密码(x,y系数大于0),那么gcd(x,y)也是密码.
      把所有密码写出来以后,可以发现是一个x,2x,3x......的形式,所以任务就是找到一个最小的x使得x整除gcd(a[k],n).同时这个x不能整除a[j](1 ≤ j < k).那么x就是gcd(a[k],n)的因子,根号的时间处理出来然后进行判断.判断的话也有一个优化,如果y是密码,gcd(x,y)不是密码,那么x也不是密码,所以在判断的时候看一下所有的gcd(a[j],n)是否被当前的因子整除就行了.
#include <cstdio>
#include <cmath>
#include <cstring>
#include <iostream>
#include <algorithm> using namespace std; typedef long long ll; ll n,k,a[],ans = n,cnt; bool check(ll x)
{
for (int i = ; i <= cnt; i++)
if (a[i] % x == )
return false;
return true;
} ll gcd(ll a,ll b)
{
if (!b)
return a;
return gcd(b,a % b);
} int main()
{
scanf("%lld%lld",&n,&k);
for (int i = ; i <= k; i++)
{
scanf("%lld",&a[i]);
a[i] = gcd(a[i],n);
}
sort(a + ,a + k);
for (int i = ; i < k; i++)
if (a[i] != a[i - ])
a[++cnt] = a[i];
for (ll i = ; i <= sqrt(a[k]); i++)
if (a[k] % i == )
{
if (check(i))
{
ans = n / i;
break;
}
else
if (check(a[k] / i))
ans = n / a[k] * i;
}
printf("%lld\n",ans); return ;
}

bzoj2277 [Poi2011]Strongbox的更多相关文章

  1. BZOJ2277[Poi2011]Strongbox——数论

    题目描述 Byteasar is a famous safe-cracker, who renounced his criminal activity and got into testing and ...

  2. BZOJ2277 [Poi2011]Strongbox 【数论】

    题目链接 BZOJ2277 题解 orz太难了 如果一个数\(x\)是密码,那么所有\((x,n)\)的倍数都是密码 如果两个数\(x,y\)是密码,那么所有\((x,y)\)的倍数都是密码 那么如果 ...

  3. bzoj 2277 [Poi2011]Strongbox 数论

    2277: [Poi2011]Strongbox Time Limit: 60 Sec  Memory Limit: 32 MBSubmit: 527  Solved: 231[Submit][Sta ...

  4. 【BZOJ】2277: [Poi2011]Strongbox

    题意 有一个密码箱,\(0\)到\(n-1\)中的某些整数是它的密码.如果\(a\)和\(b\)都是它的密码,那么\((a+b)%n\)也是它的密码(\(a,b\)可以相等).某人试了\(k\)次密码 ...

  5. BZOJ 2277 Poi2011 Strongbox

    题目大意:一个集合A,包含了0~n-1这n个数.另有一个集合B,满足: 1.B是A的子集. 2.如果a.b均在B中,则(a+b)%n也在B中(a=b亦可) 给出k个数ai,前k-1个不在B中,第k个在 ...

  6. POI2011题解

    POI2011题解 2214先咕一会... [BZOJ2212][POI2011]Tree Rotations 线段树合并模板题. #include<cstdio> #include< ...

  7. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  8. POI做题笔记

    POI2011 Conspiracy (2-SAT) Description \(n\leq 5000\) Solution 发现可拆点然后使用2-SAT做,由于特殊的关系,可以证明每次只能交换两个集 ...

  9. [poi2011]bzoj 2277 —— strongbox·[洛谷3518]

    ·问题描述· 有一个密码箱,0到n-1中的某些数是它的密码.且满足:如果a和b都是它的密码,那么(a+b)%n也是它的密码.某人试了k次密码,前k-1次都失败了,最后一次成功. 问:该密码箱最多有多少 ...

随机推荐

  1. discuz x2.5用户注册后邮箱认证后无法收到邮件或者直接进垃圾箱

    又是一个周末,jquery特效继续折腾我那discuz论坛,我开启了个邮箱验证,恶意注册的太恶心了,没有办法. 能稍微屏蔽点,但是问题来了,据亲们反应,无法收到验证邮件,或者有时间直接进入垃圾箱,这个 ...

  2. windows 7 正确禁用 IPv6

    与Windows XP和Windows Server 2003不同的是,Windows Vista和Windows Server 2008中的IPv6无法被卸载.然而,在Windows Vista和W ...

  3. 前端之HTML语法及常用标签

    html语法: 1.常规标记: <标记 属性=“属性值” 属性=“属性值”></标记>: 2.空标记: <标记 属性=“属性值” 属性=“属性值”/> 注意事项: ...

  4. iphone x 高度:100%; 兼容设置

    问题: iphone x 会遇到页面设置 height:100%;之后但是底部还有一定的高度没有覆盖 解决方法: 1.让客户端设置webview的高度为100%; 2.html代码里面添加 viewp ...

  5. 磁盘格式化mke2fs

    -b 设置每个块的大小,当前支持1024,2048,40963种字节 -i 给一个inode多少容量 -c 检查磁盘错误,仅执行一次-c时候,会进行快速读取测试:-c -c会测试读写,会很慢 -L 后 ...

  6. 利用JSTL重写查询的jsp页面

    利用JSTL重写Java Web MVC实例中的jsp页面 第一步:导入jstl.jar和standard.jar文件

  7. Visual studio每次build自动增加版本号

    关键词:visual studio,rc file,VS_VERSION_INFO,FILEVERSION,PRODUCTVERSION 目标:希望每次在vs中编译项目时,生成的可执行程序版本号自动+ ...

  8. 恩智浦iMX6Q核心板/飞思卡尔Cortex-A9高稳定性低功耗开发板

    iMX6Q核心板-商业级 iMX6Q-Plus核心板 iMX6DL核心板-商业级 iMX6Q核心板-工业级 iMX6核心板区别: 名称 主频 内存 存储 SATA接口 运行温度 引角扩展 iMX6Q核 ...

  9. du - 报告磁盘空间使用情况

    总览 du [options] [file...] POSIX 选项: [-askx] GNU 选项 (最短格式): [-abcDhHklLmsSxX] [--block-size=size] [-- ...

  10. IIR数字滤波器

    对于N阶IIR的计算方程式为: 一阶 Y(n)=a∗X(n)+(1−a)∗Y(n−1) 二阶 y[n]=b0⋅x[n]+b1⋅x[n−1]+b2⋅x[n−2]−a1⋅y[n−1]−a2⋅y[n−2]