其实就是一道很简单的栈,只要明白什么情况会被挡住就行了。假如斜率一样则下面的被挡住,假如不一样就算交点,看那个交点在上面就行了。

题干:

Description
  在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为
可见的,否则Li为被覆盖的.
例如,对于直线:
L1:y=x; L2:y=-x; L3:y=
则L1和L2是可见的,L3是被覆盖的.
给出n条直线,表示成y=Ax+B的形式(|A|,|B|<=),且n条直线两两不重合.求出所有可见的直线.
Input
  第一行为N( < N < ),接下来的N行输入Ai,Bi
Output
  从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必须有个空格
Sample Input - Sample Output

代码:

#include<iostream>
#include<cstdio>
#include<cmath>
#include<ctime>
#include<queue>
#include<algorithm>
#include<cstring>
using namespace std;
#define duke(i,a,n) for(int i = a;i <= n;i++)
#define lv(i,a,n) for(int i = a;i >= n;i--)
#define clean(a) memset(a,0,sizeof(a))
const int INF = << ;
typedef long long ll;
typedef double db;
template <class T>
void read(T &x)
{
char c;
bool op = ;
while(c = getchar(), c < '' || c > '')
if(c == '-') op = ;
x = c - '';
while(c = getchar(), c >= '' && c <= '')
x = x * + c - '';
if(op) x = -x;
}
template <class T>
void write(T x)
{
if(x < ) putchar('-'), x = -x;
if(x >= ) write(x / );
putchar('' + x % );
}
const db eps = 1e-;
struct node
{
db a,b;
int n;
}l[];
int n,top;
bool ans[];
node st[];
bool cmp(node a,node b)
{
if(fabs(a.a - b.a) < eps)
return a.b < b.b;
else
return a.a < b.a;
}
db crossx(node x1,node x2)
{
return (x2.b - x1.b) / (x1.a - x2.a);
}
void insert(node a)
{
while(top)
{
if(fabs(st[top].a - a.a) < eps)
top--;
else if(top > && crossx(a,st[top - ]) <= crossx(st[top],st[top - ]))
top--;
else
break;
}
st[++top] = a;
}
void work()
{
duke(i,,n)
insert(l[i]);
duke(i,,top)
{
ans[st[i].n] = ;
}
duke(i,,n)
if(ans[i] == )
printf("%d ",i);
}
int main()
{
read(n);
duke(i,,n)
{
scanf("%lf%lf",&l[i].a,&l[i].b);
l[i].n = i;
}
sort(l + ,l + n + ,cmp);
work();
return ;
}

B1007 [HNOI2008]水平可见直线 几何的更多相关文章

  1. bzoj1007 [HNOI2008]水平可见直线 - 几何 - hzwer.com

    Description Input 第一行为N(0 < N < 50000),接下来的N行输入Ai,Bi Output 从小到大输出可见直线的编号,两两中间用空格隔开,最后一个数字后面也必 ...

  2. 【bzoj1007】[HNOI2008]水平可见直线

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5932  Solved: 2254[Submit][Sta ...

  3. bzoj 1007 [HNOI2008]水平可见直线(单调栈)

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 5120  Solved: 1899[Submit][Sta ...

  4. BZOJ 1007 [HNOI2008]水平可见直线

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 4453  Solved: 1636[Submit][Sta ...

  5. 1007: [HNOI2008]水平可见直线[维护下凸壳]

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7184  Solved: 2741[Submit][Sta ...

  6. 2018.07.03 BZOJ 1007: [HNOI2008]水平可见直线(简单计算几何)

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MB Description 在xoy直角坐标平面上有n条直线L1,L2,-Ln, ...

  7. BZOJ 1007 [HNOI2008]水平可见直线 (栈)

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7940  Solved: 3030[Submit][Sta ...

  8. BZOJ 1007: [HNOI2008]水平可见直线 栈/计算几何

    1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec  Memory Limit: 162 MB 题目连接 http://www.lydsy.com/JudgeOnline ...

  9. 【BZOJ1007】[HNOI2008]水平可见直线 半平面交

    [BZOJ1007][HNOI2008]水平可见直线 Description 在xoy直角坐标平面上有n条直线L1,L2,...Ln,若在y值为正无穷大处往下看,能见到Li的某个子线段,则称Li为可见 ...

随机推荐

  1. Luogu P1349 广义斐波那契数列

    解题思路 既然广义斐波那契,而且数据范围这么大,那么我们使用矩阵快速幂来进行求解.大家都知道斐波那契的初始矩阵如下 $$\begin{bmatrix}1&1\\1&0\end{bmat ...

  2. Gym - 101670G Ice cream samples(CTU Open Contest 2017 尺取法)

    题目: To encourage visitors active movement among the attractions, a circular path with ice cream stan ...

  3. Linux:DNS主、从、缓存服务器配置、DNS同步加密TSIG配置、DNS分离解析配置

    DNS主服务器配置(正向解析.反向解析) 正向解析:根据主机名查找对应的IP地址.当用户访问一个域名时(不考虑hosts文件等因素),正常情况会向指定的DNS主机发送递归查询请求反向解析:根据IP地址 ...

  4. CentOS 6磁盘配额

    可以指定用户能超过其配额限制.如果不想拒绝用户对卷的访问但想跟踪每个用户的磁盘空间使用情况,启用配额而且不限制磁盘空间的使用是非常有用的.也可指定不管用户超过配额警告级别还是超过配额限制时是否要记录事 ...

  5. 【nginx】记录nginx+php-fpm实现大文件下载排坑的过程

    先上一段代码,支持大文件下载和断点续传,代码来源互联网. set_time_limit(0); // 省略取文件路径的过程,这里直接是文件完整路径 $filePath = get_save_path( ...

  6. 【03】全局 CSS 样式

    全局 CSS 样式 设置全局 CSS 样式:基本的 HTML 元素均可以通过 class 设置样式并得到增强效果:还有先进的栅格系统. 概览 深入了解 Bootstrap 底层结构的关键部分,包括我们 ...

  7. 关于ant引用android第三方工程打包的问题, invalid resource directory name: F:\workspace\Zlib\bin\res/crunch

    转载自 https://zhidao.baidu.com/question/200134399463655885.html invalid resource directory name: F:\wo ...

  8. 数据库删除数据表重复数据,只留下ID较小的行

    删除表中重复数据,留下ID比较小的行 delete from 表 where [重复字段] in (select [重复字段] from 表 group by 字段 having count([字段] ...

  9. 【Tomcat】Tomcat替换猫的图片

    参考:网页title上添加图片 直接替换Tomcat安装目录下ROOT下面的favicon.ico图标(名字与前面一样favicon.ico)

  10. 转载 字符串hash

    转载自:http://www.cnblogs.com/jiu0821/p/4554352.html 求一个字符串的hash值: •现在我们希望找到一个hash函数,使得每一个字符串都能够映射到一个整数 ...