https://zybuluo.com/ysner/note/1099616

题面

给你三个数\(x\),\(y\),\(z\),问你能够凑出多少个[1,\(h\)]之间的数。

解析

处理出\(y\),\(z\)能凑出的高度

然后这些高度凑一些\(x\)就可以得到其它的高度

那么可以把这些\(y\),\(z\)凑出的高度对\(x\)取模,其它的用\(x\)来填补

所以设\(dp[i]\)表示\(y\),\(z\)凑出高度%\(x\)为\(i\)需要的最低高度

那么答案就是$$ans=\sum_{i=0}^{x-1}(\frac{h-dp[i]}{x}+1)$$

代码

#include<iostream>
#include<cmath>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<queue>
#define ll long long
#define re register
#define il inline
#define fp(i,a,b) for(re int i=a;i<=b;i++)
#define fq(i,a,b) for(re int i=a;i>=b;i--)
using namespace std;
const int N=5e5;
int h[N],cnt,X,Y,Z;ll dp[N];
bool vis[N];
ll ans,H;
struct Edge{int to,next,w;}e[N<<1];
struct node
{
ll dis;int u;
bool operator < (const node &o) const {return dis>o.dis;}
};
priority_queue<node>Q;
il void add(re int u,re int v,re int w){e[++cnt]=(Edge){v,h[u],w};h[u]=cnt;}
il ll gi()
{
re ll x=0,t=1;
re char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-') ch=getchar();
if(ch=='-') t=-1,ch=getchar();
while(ch>='0'&&ch<='9') x=x*10+ch-48,ch=getchar();
return x*t;
}
il void Dijstra()
{
memset(dp,127,sizeof(dp));dp[1%X]=1;Q.push((node){1,1%X});
while(!Q.empty())
{
re int u=Q.top().u;Q.pop();
if(vis[u]) continue;vis[u]=1;
for(re int i=h[u];i+1;i=e[i].next)
{
re int v=e[i].to;
if(dp[v]>dp[u]+e[i].w)
{
dp[v]=dp[u]+e[i].w;
Q.push((node){dp[v],v});
}
}
}
}
int main()
{
memset(h,-1,sizeof(h));
H=gi();X=gi();Y=gi();Z=gi();
if(Y<X) swap(Y,X);if(Z<X) swap(Z,X);
fp(i,0,X-1) add(i,(i+Y)%X,Y),add(i,(i+Z)%X,Z);
Dijstra();
fp(i,0,X-1) if(dp[i]<=H) ans+=((H-dp[i])/X+1);
printf("%lld\n",ans);
return 0;
}

Luogu3403跳楼机的更多相关文章

  1. Luogu3403: 跳楼机

    题面 传送门 Sol 有一个显然的想法 处理出\(y, z\)能凑出的高度 然后这些高度凑一些\(x\)就可以得到其它的高度 那么可以把这些\(y, z\)凑出的高度对\(x\)取模,其它的用\(x\ ...

  2. JZOJ 4722. 跳楼机

    Description  DJL为了避免成为一只咸鱼,来找srwudi学习压代码的技巧.Srwudi的家是一幢h层的摩天大楼.由于前来学习的蒟蒻越来越多,srwudi改造了一个跳楼机,使得访客可以更方 ...

  3. [jzoj 4722] [NOIP2016提高A组模拟8.21] 跳楼机 解题报告 (spfa+同余)

    题目链接: http://172.16.0.132/senior/#main/show/4722 题目: DJL为了避免成为一只咸鱼,来找srwudi学习压代码的技巧.Srwudi的家是一幢h层的摩天 ...

  4. 【同余最短路】【例题集合】洛谷P3403 跳楼机/P2371 墨墨的等式

    接触到的新内容,[同余最短路]. 代码很好写,但思路不好理解. 同余最短路,并不是用同余来跑最短路,而是通过同余来构造某些状态,从而达到优化时间空间复杂度的目的.往往这些状态就是最短路中的点,可以类比 ...

  5. luogu P3403 跳楼机 同余最短路

    LINK:跳楼机 很早之前就想学的一个东西.发现这个东西果然神奇. 我们要找到 所有的 w满足 \(w=1+ax+by+cz\).且 \(1\leq w\leq h\) 暴力枚举是不行的. 做法是这样 ...

  6. P3403 跳楼机

    题解: 据说是最短路经典题 考虑mod c一意义下 我们会发现mod c相同的话我们一定会用最少步数到达,剩余的都用c转移 由于转移图有环所以我们用spfa来dp(其实也可以理解成最短路) wa了好多 ...

  7. 洛谷P3403跳楼机(最短路构造/同余最短路)

    题目-> 解题思路: 最短路构造很神啊. 先用前两个值跑在第三个值模意义下的同余最短路(这步贪心可以证明,如果第三步长为z,那么如果n+z可以达到,n+2z同样可以达到) 最后计算与楼顶差多少个 ...

  8. [洛谷P3403] 跳楼机

    题目传送门 套路题,同余最短路. 先只考虑y.z进行连边,再在mod x的意义下进行计算. 这里的“距离”dis[i]指的是,在所有满足a mod x=i的a里,能到达的最小的a是多少. 显然只要能到 ...

  9. [Luogu2371][国家集训队]墨墨的等式

    luogu 题意 给出\(n,a_i,B_{min},B_{max}\),求使得\(a_1x_1+a_2x_2+...+a_nx_n=B\)存在一组非负整数解的\(B\in[B_{min},B_{ma ...

随机推荐

  1. java代码完全手写模仿qq登录界面

    这是我模仿QQ2015版界面,实现的基本功能有登陆验证,重置等,当然直接复制代码运行是不一样的,还要注意自己插入自己的图片. 结果截图如下所示: import java.awt.BorderLayou ...

  2. 让元素div消失在视野中

    让元素div消失在视野中1.position:absolute/relative/fixed + 方位 top/bottom/left/right: -9999px2.display:none3.vi ...

  3. UVA - 10410 Tree Reconstruction(栈处理递归)

    题目: 给出一棵树的BFS和DFS序列,输出这棵树中每个结点的子结点列表.BFS和DFS序列在生成的时候,当一个结点被扩展时,其所有子结点应该按照编号从小 到大的顺序访问. 思路: 一开始是想根据BF ...

  4. 每日命令:(4)mkdir

    linux mkdir 命令用来创建指定的名称的目录,要求创建目录的用户在当前目录中具有写权限,并且指定的目录名不能是当前目录中已有的目录. 1.命令格式: mkdir [选项] 目录... 2.命令 ...

  5. pyinstaller打包问题总结

    1.pyinstaller常见用法 -w:禁止cmd窗口 -F:打包为单文件 比如:pyinstaller -w -F test.py 2.QT中UI转py文件 pyuic5 test.ui -o t ...

  6. virtualenv与virtualenvwrapper

    一.Linux下安装.配置virtualenv pip3 install virtualenv # 创建虚拟环境env1 virtualenv env1 --no-site-packages --py ...

  7. 解决window 10 安装软件2503 2502错误

    1.首先打开任务管理器,可以通过右键点击桌面上的任务栏打开任务管理器,也可以通过同时按下键盘上的Ctrl+Alt+Delete键打开任务管理器. 2.打开任务管理器后,切换到“详细信息”选项卡,找到e ...

  8. Django基础——ORM字段和字段参数

    ORM概念: 对象关系映射(Object Relational Mapping,简称ORM)模式是一种为了解决面向对象与关系数据库存在的互不匹配的现象( 1. 不同的程序员写的SQL水平参差不齐 2. ...

  9. WebSocket客户端学习

    1. WebSocket是一种网络通讯协议 参考文档:http://www.ruanyifeng.com/blog/2017/05/websocket.html https://github.com/ ...

  10. JavaSE 学习笔记之Jdk5.0新特性(十九)

    Jdk5.0新特性: Collection在jdk1.5以后,有了一个父接口Iterable,这个接口的出现的将iterator方法进行抽取,提高了扩展性. --------------------- ...