分析:

定义状态dp[i]表示长度为i的最长不下降子序列最大的那个数。

每次进来一个数直接找到dp数组第一个大于于它的数dp[x],并把dp[x - 1]修改成 那个数。就可以了

AC代码:

# include <iostream>
# include <cstdio>
# include <cstring>
# include <algorithm>
using namespace std;
const int N = ;
int dp[N],n,pre[N],x,y,xh[N],a[N];
void out(int k){
if(k)out(pre[k]);else return;
printf("%d ",a[k]);
}
int main(){
memset(dp,0x3f3f3f3f,sizeof dp);
for(int i = ;i <= n;i++){
scanf("%d",&a[i]);
y = upper_bound(dp + ,dp + n + ,a[i]) - dp;
dp[y] = a[i];
xh[y] = i;
pre[i] = xh[y - ];
}
int len = lower_bound(dp + ,dp + n + ,dp[]) - dp - ;
printf("%d\n",len);
out(xh[len]);
return ;
}

最长不下降子序列 (O(nlogn)算法)的更多相关文章

  1. 求最长不下降子序列(nlogn)

    最长递增子序列问题:在一列数中寻找一些数,这些数满足:任意两个数a[i]和a[j],若i<j,必有a[i]<a[j],这样最长的子序列称为最长递增子序列. 设dp[i]表示以i为结尾的最长 ...

  2. 最长不下降子序列 O(nlogn) || 记忆化搜索

    #include<stdio.h> ] , temp[] ; int n , top ; int binary_search (int x) { ; int last = top ; in ...

  3. 【动态规划】【二分】【最长不下降子序列】洛谷 P1020 导弹拦截

    最长不下降子序列的nlogn算法 见 http://www.cnblogs.com/mengxm-lincf/archive/2011/07/12/2104745.html 这题是最长不上升子序列,倒 ...

  4. [Usaco2008 Feb]Eating Together麻烦的聚餐[最长不下降子序列]

    Description 为了避免餐厅过分拥挤,FJ要求奶牛们分3批就餐.每天晚饭前,奶牛们都会在餐厅前排队入内,按FJ的设想所有第3批就餐的奶牛排在队尾,队伍的前端由设定为第1批就餐的奶牛占据,中间的 ...

  5. 最长不下降子序列的O(n^2)算法和O(nlogn)算法

    一.简单的O(n^2)的算法 很容易想到用动态规划做.设lis[]用于保存第1~i元素元素中最长不下降序列的长度,则lis[i]=max(lis[j])+1,且num[i]>num[j],i&g ...

  6. 最长不下降子序列nlogn算法详解

    今天花了很长时间终于弄懂了这个算法……毕竟找一个好的讲解真的太难了,所以励志我要自己写一个好的讲解QAQ 这篇文章是在懂了这个问题n^2解决方案的基础上学习. 解决的问题:给定一个序列,求最长不下降子 ...

  7. hdu1025 最长不下降子序列nlogn算法

    C - DP Crawling in process... Crawling failed Time Limit:1000MS     Memory Limit:32768KB     64bit I ...

  8. 最长不下降子序列 nlogn && 输出序列

    最长不下降子序列实现: 利用序列的单调性. 对于任意一个单调序列,如 1 2 3 4 5(是单增的),若这时向序列尾部增添一个数 x,我们只会在意 x 和 5 的大小,若 x>5,增添成功,反之 ...

  9. 算法进阶 (LIS变形) 固定长度截取求最长不下降子序列【动态规划】【树状数组】

    先学习下LIS最长上升子序列 ​ 看了大佬的文章OTZ:最长上升子序列 (LIS) 详解+例题模板 (全),其中包含普通O(n)算法*和以LIS长度及末尾元素成立数组的普通O(nlogn)算法,当然还 ...

随机推荐

  1. 使用原生JavaScript模拟getElementByClassName .

    最近在工作中,由于有一个插件必须使用jquery-pack.js,而这个包又是非常古老的jquery,所以又的函数是无法使用的,例如$()选择器以及parent()都取不到标签的内容. 所以没办法,只 ...

  2. uva1627 Team them up!

    注意这题要求互相认识不认识的人之间连一条线一个人在组1,那么不认识(互相认识)的人就在组0:同时这些人不认识的人就在组1.每个联通分量都可以独立推导,遇到矛盾则无解一个联通分量有一个核心,其他的点是分 ...

  3. react开启一个项目 webpack版本出错

    npx create-react-app my-app cd my-app npm start 在命令行里执行以上语句就可(前两天刚刚发现,最新版的react对webpack的版本要了新要求,大概是他 ...

  4. T1订正记-AC自动机-从树到图

    AC自动机已经足够棒了. 但是,好像有时还是要TLE的. 一般的AC自动还是比较好,如果在某些情况下还是会被卡掉,像是这个水题 考试的感觉 我看到这个题后,我清清楚楚的知道,这是个AC自动机+栈. 经 ...

  5. MySQL系列(三)--数据库结构优化

    良好的数据库逻辑设计和物理设计是数据库高性能的基础,所以对于数据库结构优化是很有必要的 数据库结构优化目的: 1.减少数据的冗余 2.尽量避免在数据插入.删除和更新异常 例如:有一张设计不得当的学生选 ...

  6. PHP21 MVC

    学习目标 MVC设计模式 单一入口机制 MVC的实现 MVC设计模式 Model(模型) 是应用程序中用于处理应用程序数据逻辑的部分.通常模型对象负责在数据库中存取数据. View(视图) 是应用程序 ...

  7. MySQL-06 数据备份和恢复

    学习目标 数据备份 数据恢复 数据库迁移 导入和导出 数据备份 系统意外崩溃或者服务器硬件损坏都有可能导致数据库丢失,因此生产环境中数据备份非常重要. MySQLdump命令备份 该命令可以将数据库备 ...

  8. html自动刷新

    头部<meta http-equiv="refresh" content="10"> 或者js实现 <script language=&quo ...

  9. SQL Sever中多列拼接成一列值为NULL

    查询出数据 SELECT a.ID AS KYMain_ID , ',' + a.Leader + ',' AS KYMain_Leader , ), b.TaskLeader) FROM TB_KY ...

  10. docker 离线安装

    适用于: 1.内网安装docker 2.内网升级docker debian 8 sudo apt-get updatesudo apt-get install -d apt-transport-htt ...