LCA Nearest Common Ancestors (很典型的例题)
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.
For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.
Write a program that finds the nearest common ancestor of two distinct nodes in a tree.
Input
Output
Sample Input
2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5
Sample Output
4
3
#include<iostream>
#include<cstdio>
#include<cstring>
#include<vector>
using namespace std;
const int N=1E4+;
bool pre[N];
vector<int >ve[N];
typedef long long ll;
ll bits[];
int depth[N],fa[N][];
void inint(){
bits[]=;
for(int i=;i<=;i++) bits[i]=bits[i-]<<;
}
void dfs(int x,int y){
depth[x]=depth[y]+;
fa[x][]=y;
for(int i=;i<=;i++){
fa[x][i]=fa[fa[x][i-]][i-];
}
for(int i=;i<ve[x].size();i++){
int x1=ve[x][i];
if(x1!=y){
dfs(x1,x);
}
}
}
int lca(int x,int y){
if(depth[x]<depth[y]) swap(x,y);
int dif=depth[x]-depth[y];
for(int i=;i>=;i--){
if(dif>=bits[i]){
x=fa[x][i];
dif-=bits[i];
}
}
if(x==y) return x;
for(int i=;i>=;i--){
if(depth[x]>=bits[i]&&fa[x][i]!=fa[y][i]){
x=fa[x][i];
y=fa[y][i];
}
}
return fa[x][];
} int main(){
int t;
inint();
scanf("%d",&t);
while(t--){
memset(pre,,sizeof(pre));
memset(fa,,sizeof(fa));
memset(depth,,sizeof(depth));
int n;
scanf("%d",&n);
int x,y;
for(int i=;i<=n-;i++){
scanf("%d%d",&x,&y);
ve[x].push_back(y);
ve[y].push_back(x);
pre[y]=;
}
int ancestor; for(int i=;i<=n;i++){
if(pre[i]==){
ancestor=i;
break;
}
}
dfs(ancestor,);
scanf("%d%d",&x,&y);
printf("%d\n",lca(x,y)); for(int i=;i<=n;i++){
ve[i].clear();
}
}
return ;
}
还可以用 暴力 朴素算法来算
#include<stdio.h>///LCA最近公共祖先查询,朴素算法
#include<string.h>
int fa[]; int deep(int x)///计算x节点深度
{
int cnt=;
while(x)
{
cnt++;
x=fa[x];
}
return cnt;
}
int main()
{
int t,n;
scanf("%d",&t);
while(t--)
{
memset(fa,,sizeof(fa));///该数组记录每个节点的父亲,根节点父亲为0
int s,f;
scanf("%d",&n);
for(int i=;i<n-;i++){
scanf("%d%d",&f,&s);
fa[s]=f;
} int a,b;
scanf("%d%d",&a,&b);
int x1=deep(a),y1=deep(b);
//只是用深度做了一个判断 取了一个差。
if(x1<y1)///查询的深度若两个节点深度不同,将较深的节点先上移
{
int tt=y1-x1;
while(tt--)
b=fa[b];
}
else if(x1>y1){
int tt=x1-y1;
while(tt--)
a=fa[a];
} while(a!=b)///两个节点深度相同时同时向上寻找父亲,直到父亲相同
a=fa[a],b=fa[b];
printf("%d\n",a);
}
}
LCA Nearest Common Ancestors (很典型的例题)的更多相关文章
- 【POJ】1330 Nearest Common Ancestors ——最近公共祖先(LCA)
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 18136 Accept ...
- POJ 1330 Nearest Common Ancestors LCA题解
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 19728 Accept ...
- POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)
POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...
- POJ 1330 Nearest Common Ancestors 倍增算法的LCA
POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...
- POJ 1330 Nearest Common Ancestors(Targin求LCA)
传送门 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 26612 Ac ...
- POJ - 1330 Nearest Common Ancestors(基础LCA)
POJ - 1330 Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000KB 64bit IO Format: %l ...
- pku 1330 Nearest Common Ancestors LCA离线
pku 1330 Nearest Common Ancestors 题目链接: http://poj.org/problem?id=1330 题目大意: 给定一棵树的边关系,注意是有向边,因为这个WA ...
- poj 1330 Nearest Common Ancestors lca 在线rmq
Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...
- poj 1330 Nearest Common Ancestors(LCA 基于二分搜索+st&rmq的LCA)
Nearest Common Ancestors Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 30147 Accept ...
随机推荐
- 「面试指南」解读JavaScript原始数据类型
JavaScript 有 7 种原始数据类型: String(字符型) Number(数值型) Boolean(布尔值型) Undefined Null Object(对象型) Symbol(符号型, ...
- MySQL优化之避免索引失效的方法
在上一篇文章中,通过分析执行计划的字段说明,大体说了一下索引优化过程中的一些注意点,那么如何才能避免索引失效呢?本篇文章将来讨论这个问题. 避免索引失效的常见方法 1.对于复合索引的使用,应按照索引建 ...
- Java 添加、删除Excel表单控件
通过表单控件,用户可以快速地将数据填写到模板文档中,轻松引用单元格数据并与其进行交互.本文通过Java代码示例介绍如何在Excel表格中添加表单控件,包括文本框.单选按钮.复选框.组合框.微调按钮等: ...
- linux execl()函数 关于execl()函数族的用法不在赘述,
linux execl()函数 关于execl()函数族的用法不在赘述, linux 网络编程 1---(基本概念) 1.TCP和UDP协议 共同点:同为传输层协议 不同点: TCP:有连接,可靠 U ...
- linggle使用技巧
Linggle 搜索引擎是一个可用于英语写作的语法.句子工具,可帮助学习者分析更准确的英文写作建议,能够根据词性来推测短句和句子,可精准的分享出完整英文句子如何撰写. Linggle 是台湾学术团队研 ...
- java并发安全
本次内容主要线程的安全性.死锁相关知识点. 1.什么是线程安全性 1.1 线程安全定义 前面使用8个篇幅讲到了Java并发编程的知识,那么我们有没有想过什么是线程的安全性?在<Java并发编程 ...
- 逃生 HDU 4857(反向建图 + 拓扑排序)
逃生 链接 Problem Description 糟糕的事情发生啦,现在大家都忙着逃命.但是逃命的通道很窄,大家只能排成一行. 现在有n个人,从1标号到n.同时有一些奇怪的约束条件,每个都形如:a必 ...
- Java中的get()方法和set()方法
在Java中,为了数据的安全,换句话说就是为了隐藏你的代码的一些实现细节,我们会用private来修饰属性,使用private修饰的属性就不能被其他类直接访问了,想要访问就需要通过set.get方法: ...
- 操作系统-1-存储管理之LFU页面置换算法(leetcode460)
LFU缓存 题目:请你为 最不经常使用(LFU)缓存算法设计并实现数据结构.它应该支持以下操作:get 和 put. get(key) - 如果键存在于缓存中,则获取键的值(总是正数),否则返回 -1 ...
- Golang入门(3):一天学完GO的进阶语法
摘要 在上一篇文章中,我们聊了聊Golang中的一些基础的语法,如变量的定义.条件语句.循环语句等等.他们和其他语言很相似,我们只需要看一看它们之间的区别,就差不多可以掌握了,所以作者称它们为&quo ...