传送门

描述:\(一堆筛子,每个筛子两个面,上面有1-6之间的数字。后一个筛子与前一个筛子的接触面的点数必须相等。\)

\(求,有多少种方案堆完筛子。(方案只关心筛子的位置,不关心是否翻转)\)

\(dp[mask][last][orientation]\),表示使用\(mask\)指示的子数组,以第\(last\)个多米诺骨牌为结尾的合法排列的方法

\(orientation\)多米诺骨牌的状态,0表示原来的方向,1表示翻转。

如果\(mask\)使用二进制表示为01010101,表示使用第0,2,4,6个多米诺骨牌排列而成,1代表使用这个位置上的数组,0代表不使用。

那么,我们先枚举所有状态,再从状态中枚举两个被用过的筛子\(last\)和\(i\)

假设last是结尾用的筛子,那么尝试接到筛子\(i\)上去

如果i和last都是原来的方向:

\(dp[mask][last][0] =sum (dp[mask][last][0],dp[premask][i][0])。\)

如果i是翻转的,last是原来的方向:

\(dp[mask][last][0] =sum (dp[mask][last][0],dp[premask][i][1])。\)

如果i是原来的方向,last是翻转的方向:

\(dp[mask][last][1] =sum (dp[mask][last][1],dp[premask][i][0])。\)

如果i和last都是翻转的方向:

\(dp[mask][last][1] =sum (dp[mask][last][1],dp[premask][i][1])。\)

最后只要将所有\(dp[1<<n-1][i][0]\)和\(dp[1<<n-1][i][1]\)累加所得即可(当\(s[i]==t[i]\)时不用加\(dp[1<<n-1][i][1]\))。

特殊情况——如果所有的多米诺骨牌都是一样的,那么所有的顺序都是有效的,即全排列。

自己仿照标称的代码

标程

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1e9+7;
int s[20],t[20];
ll p[25];
ll dp[70000][20][2];
int main()
{ int T,i,mask,last,n;
p[0]=1;
for(i=1;i<=20;i++)p[i]=p[i-1]*i%mod;
scanf("%d",&T);
while(T--)
{
int fl=0;
scanf("%d",&n);
for(i=0;i<n;i++)
scanf("%d%d",&s[i],&t[i]);
for(i=1;i<n;i++)
if((s[i]==s[0]&&t[i]==t[0])||(s[i]==t[0]&&t[i]==s[0])){}
else {fl=1;break;} // 特殊情况——如果所有的多米诺骨牌都是一样的,那么所有的顺序都是有效的。
if(fl==0)
{
printf("%lld\n",p[n]);
continue;
} memset(dp,0,sizeof dp); //初始化,表示每个骨牌都有一个初始状态
for(i=0;i<n;i++)
dp[1<<i][i][0]=dp[1<<i][i][1]=1; for(mask=3;mask<(1<<n);mask++)
{
for(last=0;last<n;last++)
{
if((mask&(1<<last))==0)continue;
int premask=mask-(1<<last); for(i=0;i<n;i++)
{
if((premask&(1<<i))==0)continue; //i和last都是原来的方向
if(t[i]==s[last])
dp[mask][last][0] = (dp[mask][last][0]+dp[premask][i][0])%mod;
//i是翻转的,last是原来的方向
else if(s[i]==s[last])
dp[mask][last][0] = (dp[mask][last][0]+dp[premask][i][1])%mod;
//i是原来的方向,last是翻转的方向
if(t[i]==t[last])
dp[mask][last][1] = (dp[mask][last][1]+dp[premask][i][0])%mod;
//i和last都是翻转的方向
else if(s[i]==t[last])
dp[mask][last][1] = (dp[mask][last][1]+dp[premask][i][1])%mod;
}
}
}
//计算所有可能的情况
ll ans=0;
for(i=0;i<n;i++)
{
ans=(ans+dp[(1<<n)-1][i][0])%mod;
if(s[i]!=t[i])//特殊情况不再统计
ans=(ans+dp[(1<<n)-1][i][1])%mod;
}
printf("%lld\n",ans);
}
}

(Lineup the Dominoes筛子)三维状压的更多相关文章

  1. Long Dominoes(ZOJ 2563状压dp)

    题意:n*m方格用1*3的方格填充(不能重叠)求有多少种填充方法 分析:先想状态,但想来想去就是觉得不能覆盖所有情况,隔了一天,看看题解,原来要用三进制 0 表示横着放或竖放的最后一行,1表示竖放的中 ...

  2. codevs1358棋盘游戏(状压dp)

    1358 棋盘游戏  时间限制: 1 s  空间限制: 64000 KB  题目等级 : 大师 Master     题目描述 Description 这个游戏在一个有10*10个格子的棋盘上进行,初 ...

  3. 棋盘 || 状压DP

    题意:有一个n*m的棋盘(n,m≤80,n*m≤80)要在棋盘上放k(k≤20)个棋子,使得任意两个棋子不相邻(每个棋子最多和周围4个棋子相邻).求合法的方案总数. 思路:对于每一行,如果把没有棋子的 ...

  4. UOJ #129 / BZOJ 4197 / 洛谷 P2150 - [NOI2015]寿司晚宴 (状压dp+数论+容斥)

    题面传送门 题意: 你有一个集合 \(S={2,3,\dots,n}\) 你要选择两个集合 \(A\) 和 \(B\),满足: \(A \subseteq S\),\(B \subseteq S\), ...

  5. codeforces 342D Xenia and Dominoes(状压dp+容斥)

    转载请注明出处: http://www.cnblogs.com/fraud/          ——by fraud D. Xenia and Dominoes Xenia likes puzzles ...

  6. HDU5731 Solid Dominoes Tilings 状压dp+状压容斥

    题意:给定n,m的矩阵,就是求稳定的骨牌完美覆盖,也就是相邻的两行或者两列都至少有一个骨牌 分析:第一步: 如果是单单求骨牌完美覆盖,请先去学基础的插头dp(其实也是基础的状压dp)骨牌覆盖 hiho ...

  7. 【HDU 4771 Stealing Harry Potter's Precious】BFS+状压

    2013杭州区域赛现场赛二水... 类似“胜利大逃亡”的搜索问题,有若干个宝藏分布在不同位置,问从起点遍历过所有k个宝藏的最短时间. 思路就是,从起点出发,搜索到最近的一个宝藏,然后以这个位置为起点, ...

  8. 状压dp入门

    状压dp的含义 在我们解决动态规划题目的时候,dp数组最重要的一维就是保存状态信息,但是有些题目它的具有dp的特性,并且状态较多,如果直接保存的可能需要三维甚至多维数组,这样在题目允许的内存下势必是开 ...

  9. 状态压缩动态规划 状压DP

    总述 状态压缩动态规划,就是我们俗称的状压DP,是利用计算机二进制的性质来描述状态的一种DP方式 很多棋盘问题都运用到了状压,同时,状压也很经常和BFS及DP连用,例题里会给出介绍 有了状态,DP就比 ...

随机推荐

  1. GO中的逃逸分析

    1.什么是逃逸分析 以前写c/c++代码时,为了提高效率,常常将pass-by-value(传值)“升级”成pass-by-reference,企图避免构造函数的运行,并且直接返回一个指针. 那么这里 ...

  2. Byte字节

    字节(Byte )是计算机信息技术用于计量存储容量的一种计量单位,作为一个单位来处理的一个二进制数字串,是构成信息的一个小单位.最常用的字节是八位的字节,即它包含八位的二进制数. 中文名 字节 外文名 ...

  3. 数据结构和算法(Golang实现)(6)简单入门Golang-并发、协程和信道

    并发.协程和信道 Golang语言提供了go关键字,以及名为chan的数据类型,以及一些标准库的并发锁等,我们将会简单介绍一下并发的一些概念,然后学习这些Golang特征知识. 一.并发介绍 我们写程 ...

  4. Js 事件原理与事件委托

    事件原理三阶段 捕获(有外向内).目标.冒泡(由内向外) 事件冒泡(event bubbling),即事件开始时由最具体的元素(文档中嵌套层次最深的那个节点)接收,然后逐级向上传播到较为不具体的节点( ...

  5. javascript的数据类型(基本和复杂)

    一.基本数据类型 string number boolean  二.复杂数据类型 Array Date object RegExp Sting Number Boolean 核心:Object fun ...

  6. 2019-05-12 Python之模拟体育竞赛

    一.简介 可以选择任意规则,模拟不同的两个队伍进行球赛的模拟比赛 二.源代码 函数介绍: from random import * #输出介绍信息 def printIntro(): print(&q ...

  7. Redis之ziplist源码分析

    一.ziplist简介 从上一篇分析我们知道quicklist的底层存储使用了ziplist(压缩列表),由于压缩列表本身也有不少内容,所以重新开了一篇,在正式源码之前,还是先看下ziplist的特点 ...

  8. 5分钟python爬虫案例,手把手教爬取国内外最新疫情历史数据

    俗话说的好,“授之以鱼不如授之以渔”,所以小编今天就把爬疫情历史数据的方法分享给你们. 基本思路:分析腾讯新闻“抗肺炎”版块,采用“倒推法”找到疫情数据接口,然后用python模拟请求,进而保存疫情历 ...

  9. 将函数作为返回值的方法 - Python

    有的时候,我们需要将函数作为返回值,以下为代码: def superfunc(): i = 0 def wrapper(): nonlocal i i +=1 return i return wrap ...

  10. Mac 安装 brew(最新教程,绝对可行)

    现在安装brew,一会报这个错,一会儿报那个错,上网查了很多教程,用了很多时间都是不可以,电脑开VPN翻墙也不行. Warning: The Ruby Homebrew installer is no ...