[GX/GZOI2019]与或和(单调栈+按位运算)
首先看到与或,很显然想到按照位拆分运算。然后就变成了0/1矩阵,要使矩阵在当前位与为1,则矩阵全为1,如果是或为1,则是矩阵不全为0,然后求全为0/1的矩阵个数即可。记录c[i][j]表示以a[i][j]在该位向上0/1的长度。然后对于每一行,单调栈求解即可。
#include<bits/stdc++.h>
using namespace std;
const int N=,mod=1e9+;
int n,ans1,ans2,top,a[N][N],b[N][N],c[N][N],st[N],sum[N];
int calc()
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
c[i][j]=b[i][j]?c[i-][j]+:;
int ret=;
for(int i=;i<=n;i++)
{
st[]=top=;
for(int j=;j<=n;j++)
if(!c[i][j])st[]=j,top=;
else{
while(top&&c[i][j]<=c[i][st[top]])top--;
st[++top]=j,sum[top]=(sum[top-]+1ll*(j-st[top-])*c[i][j])%mod;
ret=(ret+sum[top])%mod;
}
}
return ret;
}
int main()
{
scanf("%d",&n);
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
scanf("%d",&a[i][j]);
for(int t=;t<=;t++)
{
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
b[i][j]=(a[i][j]>>t)&;
ans1=(ans1+(1ll<<t)*calc())%mod;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
b[i][j]^=;
for(int i=;i<=n;i++)
for(int j=;j<=n;j++)
ans2=(ans2+1ll*(n-i+)*(n-j+)%mod*(1ll<<t))%mod;
ans2=(ans2-(1ll<<t)*calc()%mod+mod)%mod;
}
printf("%d %d",ans1,ans2);
}
[GX/GZOI2019]与或和(单调栈+按位运算)的更多相关文章
- [LOJ3083][GXOI/GZOI2019]与或和——单调栈
题目链接: [GXOI/GZOI2019]与或和 既然求的是二进制运算的和,那么我们按位考虑,这样就将矩阵变成了一个$01$矩阵. 对于或运算,就是求有多少个子矩形中有$1$. 直接求不好办,考虑有多 ...
- 洛谷.5300.[GXOI/GZOI2019]与或和(单调栈)
LOJ BZOJ 洛谷 想了一个奇葩的单调栈,算的时候要在中间取\(\min\),感觉不靠谱不写了=-= 调了十分钟发现输出没取模=v= BZOJ好逗逼啊 题面连pdf都不挂了 哈哈哈哈 枚举每一位. ...
- [GXOI/GZOI2019]与或和(单调栈)
想了想决定把这几题也随便水个解题报告... bzoj luogu 思路: 首先肯定得拆成二进制30位啊 此后每一位的就是个01矩阵 Q1就是全是1的矩阵个数 Q2就是总矩阵个数减去全是0的矩阵个数 ...
- 【BZOJ5502】[GXOI/GZOI2019]与或和(单调栈)
[BZOJ5502][GXOI/GZOI2019]与或和(单调栈) 题面 BZOJ 洛谷 题解 看到位运算就直接拆位,于是问题变成了求有多少个全\(0\)子矩阵和有多少个全\(1\)子矩阵. 这两个操 ...
- LOJ#3083.「GXOI / GZOI2019」与或和_单调栈_拆位
#3083. 「GXOI / GZOI2019」与或和 题目大意 给定一个\(N\times N\)的矩阵,求所有子矩阵的\(AND(\&)\)之和.\(OR(|)\)之和. 数据范围 \(1 ...
- 「洛谷5300」「GXOI/GZOI2019」与或和【单调栈+二进制转化】
题目链接 [洛谷传送门] 题解 按位处理. 把每一位对应的图都处理出来 然后单调栈处理一下就好了. \(and\)操作处理全\(1\). \(or\)操作处理全\(0\). 代码 #include & ...
- LOJ#3083. 「GXOI / GZOI2019」与或和(单调栈)
题面 传送门 题解 按位考虑贡献,如果\(mp[i][j]\)这一位为\(1\)就设为\(1\)否则设为\(0\),对\(or\)的贡献就是全为\(1\)的子矩阵个数,对\(and\)的贡献就是总矩阵 ...
- [GXOI/GZOI2019]与或和(位运算,单调栈)
题目链接懒得放了. 题目大意懒得写了. 省选原题哪有找不到的…… 说实话,其实这题是个大水题,被我十秒钟内口胡出来了. 首先位运算除了拆位还能干啥?以下以与为例,或是差不多的. 我们考虑有多少个子矩阵 ...
- 单调栈求全1(或全0)子矩阵的个数 洛谷P5300与或和 P3400仓鼠窝
爆零好爽,被中学生虐好爽,还好我毕业得早 求全1(或全0)子矩阵的个数,看了题解有好几种思路,我学了三种,但有两种不是很理解,而且也没另外那个跑得快,所以简单讲述一一下我会的那种来自Caro23333 ...
随机推荐
- 对spring中IOC和AOP的理解
IOC:控制反转也叫依赖注入.利用了工厂模式. 为了方便理解,分解成每条以便记忆. 1.将对象交给容器管理,你只需要在spring配置文件总配置相应的bean,以及设置相关的属性,让spring容器 ...
- Android自定义View——自定义ViewPager
第一部分:自定义ViewGroup的使用,手势识别器和Scroller滑动 第二部分:处理滑动监听,处理滑动冲突,增加ViewPager的指示器 常见的滑动冲突:外部滑动方向和内部滑动方向不一 ...
- MessageBox.Show的使用
MessageBox.Show("内容","标题") // 摘要:// 使用指定的帮助文件.HelpNavigator 和帮助主题显示一个具有指定文本.标题.按 ...
- cf 1241 E. Paint the Tree(DP)
题意: 有一颗树,n个点,边有边权. 有无限多种颜色,每个点可以同时染上k种颜色,如果一条边的两个端点 拥有至少一种相同的颜色,那么说这条边是“饱和的”. 问:所有“饱和边”的权值和最大为多少,只需要 ...
- VUE常见的语法
模版渲染{{msg}} v-html="" v-text="" v-bind:id="" 类似 attr 三元判断 {{ok?'yes': ...
- redis(三)----连接池配置
1. 目录结构: 2. 测试源码 package com.redis; import redis.clients.jedis.Jedis; import redis.clients.jedis.Jed ...
- java 简单的冒泡
import java.util.Arrays; public class mao { public static void main(String[] args) { int [] array={1 ...
- .NET CORE 配置Swagger文档
1.先通过NuGet安装Swashbuckle.AspNetCore ,支持.NET core,版本是4.0.1,以上版本好像有些功能不支持 2.startup文件里注入swagger,Configu ...
- CSS3新特性—animate动画
1.animate介绍 1. @keyframes 自定义动画名称 { from { } to { } } 2. 通过动画名称调用动画集 animation-name: 动画集名称. 3. 属性介绍: ...
- 吴裕雄--天生自然MySQL学习笔记:MySQL 处理重复数据
有些 MySQL 数据表中可能存在重复的记录,有些情况允许重复数据的存在,但有时候我们也需要删除这些重复的数据. 防止表中出现重复数据 可以在 MySQL 数据表中设置指定的字段为 PRIMARY K ...