TC SRM498 Div1 1000PT(容斥原理+DP)
【\(Description\)】
网格中每步可以走\((0,\cdots M_x,0\cdots M_y)\)中任意非零向量,有\(K\)种向量不能走,分别是\((r_1,r_1),(r_2,r_2),\cdots , (r_K,r_K)\)。 \(r_i\)一定是\(10\)的倍数。求从\((0,0)\)走到\((Tx,Ty)\)且走\(R\)步的方案数( \(Tx,Ty,Mx,My\leq 800,R\leq 1600,K\leq 50\))
无 【\(Input\;Sample\)】
无 【\(Output\;Sample\)】
【朴素做法一】
设\(F_{i,x,y}\)表示走\(i\)步到\((x,y)\)的方案数
\]
\]
状态枚举\(i,x,y\),状态转移枚举\(a,b\)
\(O(1600\times 800^4\))
【朴素做法二】
在做法一的算法考虑如何优化。
我们注意到:状态转移这个东西,如果排除掉那\(K\)个不能走的向量,相当于对一个\(Mx\times My\)的矩阵求和
而这个东西是可以用二维前缀和维护的。所以我们只需枚举那\(K\)个不能走的向量,实现\(O(K)\)的转移
这里我们把\(K=50\)这个常数忽略掉
\(O(1600\times 800^2\))
【正解】
还是这个状态转移方程:
\]
我们发现:\(x,y\)是相互独立的,也就是说\(x\)轴上的转移与\(y\)轴上的转移是没有关系的
所以我们完全可以开两个数组:
\(f_{i,x}\)表示在一维上走\(i\)步到横坐标为\(x\)的方案数,\(g_{i,y}\)表示在一维上走\(i\)步到纵坐标为\(y\)的方案数
由此可得:
\]
通过前缀和维护,即可\(O(R\times Tx)=O(1600\times 800)\)完成\(DP\)
这只是\(K=0\)的情况,如何排除那些不合法的步数?
我们设\(h_{i,z}\)表示走\(i\)步全都不合法,走到\((10z,10z)\)的方案数(\(r_i\)一定是\(10\)的倍数)
\]
还有一个细节,由于\((0,0)\)也是不合法的,那就添加一个\(r_0=0\)即可
这就要用到容斥原理了。
即可得到答案:
\]
这里乘上\(C_R^i\)是因为我们并不知道那\(i\)个不合法的步是那几步
最后这个容斥的复杂度是\(O(R\times \frac{min(Tx,Ty)}{10})=O(1600\times 80)\)
那么就做出来了
代码我就不贴了吧,因为只要想出做法,就只是一个简单的\(DP\)了。
主要考查的是思维
TC SRM498 Div1 1000PT(容斥原理+DP)的更多相关文章
- [CF245H] Queries for Number of Palindromes (容斥原理dp计数)
题目链接:http://codeforces.com/problemset/problem/245/H 题目大意:给你一个字符串s,对于每次查询,输入为一个数对(i,j),输出s[i..j]之间回文串 ...
- 2018.07.13 [HNOI2015]落忆枫音(容斥原理+dp)
洛谷的传送门 bzoj的传送门 题意简述:在DAG中增加一条有向边,然后询问新图中一共 有多少个不同的子图为"树形图". 解法:容斥原理+dp,先考虑没有环的情况,经过尝试不难发现 ...
- BZOJ 3622: 已经没有什么好害怕的了 [容斥原理 DP]
3622: 已经没有什么好害怕的了 题意:和我签订契约,成为魔法少女吧 真·题意:零食魔女夏洛特的结界里有糖果a和药片b各n个,两两配对,a>b的配对比b>a的配对多k个学姐就可能获胜,求 ...
- BZOJ 1042:[HAOI2008]硬币购物(容斥原理+DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1042 [题目大意] 硬币购物一共有4种硬币.面值分别为c1,c2,c3,c4. 某人去 ...
- 【BZOJ3622】已经没什么好害怕的了 容斥原理+dp
Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相 ...
- Topcoder SRM 698 Div1 250 RepeatString(dp)
题意 [题目链接]这怎么发链接啊..... Sol 枚举一个断点,然后类似于LIS一样dp一波 这个边界条件有点迷啊..fst了两遍... #include<bits/stdc++.h> ...
- bzoj 1042: [HAOI2008]硬币购物【容斥原理+dp】
当然是容斥啦. 用dp预处理出\( f[i] \),表示在\( i \)价格时不考虑限制的方案数,转移方程是\( f[i]+=f[i-c[j]] \),用状压枚举不满足的状态容斥一下即可. #incl ...
- 「模拟赛20191019」B 容斥原理+DP计数
题目描述 将\(n\times n\)的网格黑白染色,使得不存在任意一行.任意一列.任意一条大对角线的所有格子同色,求方案数对\(998244353\)取模的结果. 输入 一行一个整数\(n\). 输 ...
- ARC093F Dark Horse 容斥原理+DP
题目传送门 https://atcoder.jp/contests/arc093/tasks/arc093_d 题解 由于不论 \(1\) 在哪个位置,一轮轮下来,基本上过程都是相似的,所以不妨假设 ...
随机推荐
- ubuntu-18.0.4 samba安装
(1)安装 sudo apt-get -y install samba samba-common (2)创建一个用于分享的samba目录. mkdir /home/myshare (3)给创建的这个目 ...
- C# WCF 之优势及特性
Windows Communication Foundation(WCF)是由微软开发的一系列支持数据通信的应用程序框架,可以翻译为Windows 通讯开发平台. 整合了原有的windows通讯的 . ...
- Java 多线程 -- 理解锁:手动实现可重入锁和不可重入锁
JDK提供的大多数内置锁都是可重入的,也就是 说,如果某个线程试图获取一个已经由它自己持有的锁时,那么这个请求会立 刻成功,并且会将这个锁的计数值加1,而当线程退出同步代码块时,计数器 将会递减,当计 ...
- 关于MySQL数据库存储过程的感想
以下只是学习路上的浅薄感想,如理解有所偏差,还请有识之士指正! 一.存储过程意义理解 关于存储过程,我的理解是对数据库语言进行编程调用,就像Java代码类编程写一个具有某种特定功能的方法去进行调用一样 ...
- 【Django】runserver 0.0.0.0:0 后,究竟发生了什么
WSGI协议 Django是遵循WSGI协议设计的 WSGI协议主要包括server和application两个部分: WSGI server:负责从客户端接收请求,将request转发给applic ...
- SAP采购订单入库后不允许修改单价增强
需求:在根据采购订单做了入库凭证之后,如果用户反审批采购订单去修改单价,系统提示‘已收货,不允许修改单价’. 判断流程:是否有入库凭证 如果采购订单条件按采购信息记录定价,这个价格本来就不能修改,只能 ...
- 将Spring Boot应用程序注册成为系统服务
文章目录 前期准备 打包成可执行jar包 注册成为liunx服务 System V Init Systemd Upstart 在Windows中安装 Windows Service Wrapper J ...
- VulnHub靶场学习_HA: Chanakya
HA-Chanakya Vulnhub靶场 下载地址:https://www.vulnhub.com/entry/ha-chanakya,395/ 背景: 摧毁王国的策划者又回来了,这次他创造了一个难 ...
- 【Linux常见命令】split命令
split - split a file into pieces 按照指定的行数或大小分割文件 语法: split [OPTION]... [INPUT [PREFIX]] Output fixed- ...
- 小猪的Python学习之旅 —— 16.再尝Python数据分析:采集拉勾网数据分析Android就业行情...
一句话概括本文: 爬取拉钩Android职位相关数据,利用numpy,pandas和matplotlib对招人公司 情况和招聘要求进行数据分析. 引言: 在写完上一篇<浅尝Python数据分析: ...