Docker中提交任务到Spark集群
1. 背景描述和需求
数据分析程序部署在Docker中,有一些分析计算需要使用Spark计算,需要把任务提交到Spark集群计算。
接收程序部署在Docker中,主机不在Hadoop集群上。与Spark集群网络互通。
需求如下
1、在Docker中可程序化向Spark集群提交任务
2、在Docker中可对Spark任务管理,状态查询和结束
2. 解决方案
在Docker中搭建一套Spark、Hadoop环境。任务通过spark-submit --master yarn --deploy-mode cluster来提交到Spark on YARN集群执行。
任务监控通过hadoop的restful接口来监控和管理。
2.1. Yarn client 模式为行不通
任务发布的docker实例,不在spark集群中,属于非集群机器。只有spark yarn模式的入口,但是hdfs无法与hadoop集群通信。
为什么不能hdfs不能通信?
每个docker启动时,一般不指定ip地址和机器名,不能再集群中预先配置好ip地址和机器名。
并且在hadoop集群中添加了一个动态的docker,但是并不参与任务执行,不利于环境的管理。
在docker中,你的环境配置(python路径,hadoop路径等)可能与hadoop集群不一致,所以以client模式运行时,存在找不到配置的错误。
以cluster模式运行,只要保证把任务所需的文件上传到hadoop集群即可正常运行任务,docker不与集群通信业可以正常执行任务。
Client模式为何不行?
Client模式是由RM分配一个AM,然后由executor反向driver注册,dirver发送task,在回收结果。
但是现在dirver在Docker中,executor找不到dirver的地址,无法注册,所以导致client模式无法使用。
https://www.cnblogs.com/fbiswt/p/4667956.html
1、客户端安装的机器一般是虚拟机,虚拟机的名称可能是随便搞的,然而,yarn-client模式提交任务,是默认把本机当成driver的。所以导致其他的机器无法通过host的name直接访问这台机器。报错就是Failed to connect to driver at x.x.x.x,retrying.....
解决办法:在命令后面加上一个--conf spark.driver.host=$your_ip_address,后面直接填客户端机器的IP地址就行。还有一个办法:export SPARK_JAVA_OPTS="-Dspark.driver.host=$your_ip_address",但是这种方法你在用完yarn-client后就没有办法再用yarn-cluster了。千万不能把这个参数配置到spark-default.conf里面。
2.2. Cluster与client模式异同
Cluster模式,driver节点在集群内部,可以最大限度的减少driver和executor直接的网络延时。
这部分内容有详细介绍。
3. Spark on Yarn集群环境搭建
3.1. Spark on Yarn集群搭建
资源管理模式设置为YARN模式,开放Hadoop Web管理页面。
详细搭建过程略。网上有详细文档。
3.2. Web管理页面和rest配置
hadoop目录etc/Hadoop目录yarn-site.xml文件
通过yarn.resourcemanager.webapp.address 设置web访问地址和端口
<!-- Site specific YARN configuration properties -->
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>master:8032</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>master:8030</value>
</property>
<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>master:8031</value>
</property>
<property>
<name>yarn.resourcemanager.admin.address</name>
<value>master:8033</value>
</property>
<property>
<name>yarn.resourcemanager.webapp.address</name>
<value>IP address:8088</value>
</property>
4. Docker环境搭建和设置
4.1. 软件配套表
编号 |
软件名称 |
软件版本 |
1 |
Java |
java version "1.8.0_121" Java(TM) SE Runtime Environment (build 1.8.0_121-b13) Java HotSpot(TM) 64-Bit Server VM (build 25.121-b13, mixed mode) |
2 |
Spark |
spark-2.3.2-bin-hadoop2.7 |
3 |
Hadoop |
hadoop-2.7.3 |
4 |
Linux os |
Centos 6.5 64bit |
5 |
Docker |
17.09.0-ce |
6 |
Python |
anaconda3:4.2.0 |
4.2. 制作Spark的Docker镜像
安装基础软件
把java、spark、hadoop、python的软件放到同一个目录下,在Dockerfile中使用ADD命令添加软件到镜像。
软件放到了./add 目录下,通过ADD命令把目录下的软件添加到Docker中的/目录
ADD ./add /
软件环境变量设置
这里以把java、spark、hadoop、anaconda3:4.2.0都放到根目录下为例:
# Spark ENV
JAVA_HOME="/jdk1.8.0_121"
SPARK_HOME="/spark-2.3.2-bin-hadoop2.7"
HADOOP_HOME="/hadoop-2.7.3"
CLASSPATH="/anaconda3/bin;/jdk1.8.0_121/lib/dt.jar:/jdk1.8.0_121/lib/tools.jar"
PATH="/jdk1.8.0_121/bin:$PATH:/spark-2.3.2-bin-hadoop2.7/bin:/hadoop-2.7.3/bin"
Hadoop配置
Hadoop配置文件直接使用spark集群中的hadoop配置即可。路径为hadoop_dir/etc/Hadoop,把目录下的配置都复制过来即可。
提示:
如果Docker中java路径与Spark中一致,则需要修改为docker中的路径。不然docker中spark无法运行
如果提交的是任务是python程序,则PYSPARK_PYTHON设置要求与spark集群的配置保持一致。
通过PYSPARK_PYTHON="/anaconda3/bin/python"来设置
在Docker的程序中,执行用户与spark集群中的执行账户可能不一致,则需要通过环境变量HADOOP_USER_NAME来设置。与集群中保持一致,不然会产生权限问题。
HADOOP_USER_NAME="spark"
Dockerfile示例
FROM your_base_env ENV LANG="en_US.UTF-8" ADD ./add . # Spark ENV ENV JAVA_HOME="/jdk1.8.0_121" SPARK_HOME="/spark-2.3.2-bin-hadoop2.7" HADOOP_HOME="/hadoop-2.7.3" CLASSPATH="/jdk1.8.0_121/lib/dt.jar:/jdk1.8.0_121/lib/tools.jar" \ PATH="/jdk1.8.0_121/bin:$PATH:/spark-2.3.2-bin-hadoop2.7/bin:/hadoop-2.7.3/bin" PATH="$PATH:$INSTALL_PATH" PYTHONPATH="$INSTALL_PATH" LANG="en_US.UTF-8" \ HADOOP_CONF_DIR="/hadoop-2.7.3/etc/hadoop/ " PYSPARK_PYTHON="/anaconda3/bin/python" HADOOP_USER_NAME="spark"
4.3. 环境检查
配置完成后,打包镜像,启动一个实例
检查spark配置
输入命令:spark-submit,检查spark是否安装完成
看到下面的信息,说明spark设置成功
[root@3920e4505b70 stg]# spark-submit Usage: spark-submit [options] <app jar | python file | R file> [app arguments] Usage: spark-submit --kill [submission ID] --master [spark://...] Usage: spark-submit --status [submission ID] --master [spark://...] Usage: spark-submit run-example [options] example-class [example args] Options: --master MASTER_URL spark://host:port, mesos://host:port, yarn, k8s://https://host:port, or local (Default: local[*]). --deploy-mode DEPLOY_MODE Whether to launch the driver program locally ("client") or on one of the worker machines inside the cluster ("cluster") (Default: client). --class CLASS_NAME Your application's main class (for Java / Scala apps). --name NAME A name of your application. --jars JARS Comma-separated list of jars to include on the driver and executor classpaths. --packages Comma-separated list of maven coordinates of jars to include on the driver and executor classpaths. Will search the local maven repo, then maven central and any additional remote repositories given by --repositories. The format for the coordinates should be groupId:artifactId:version. --exclude-packages Comma-separated list of groupId:artifactId, to exclude while resolving the dependencies provided in --packages to avoid dependency conflicts.
检查Hadoop配置
输入命令:yarn application -list 检查hadoop集群配置
看到下面输出表示正常
[root@3920e4505b70 /]# yarn application -list
Total number of applications (application-types: [] and states: [SUBMITTED, ACCEPTED, RUNNING]):0
Application-Id Application-Name Application-Type User Queue State Final-State Progress Tracking-URL
执行任务Demo
环境检查没有问题,执行demo代码来检查下:
spark-submit --master yarn --deploy-mode cluster /spark-2.3.2-bin-hadoop2.7/examples/src/main/python/pi.py
没有问题,则会看到任务状态为ACCEPTED说明集群接受了任务
RUNNING说明spark集群开始执行任务了。
5. 任务监控
任务监控的两个方法
- Yarn 命令行
- Hadoop HTTP rest接口
由于开发语言为python,调用shell命令没有rest接口方便,选择使用rest接口来做任务监控方案。
5.1. yarn application命令监控和管理
通过命令查看当前运行的任务,查看自己运行的任务是否在列表中
yarn application –list 查看任务列表
yarn application –kill applicationID 结束指定任务
5.2. hadoop集群的rest接口来管理
在python中调用shell命令,存在诸多不便。
调用rest接口非常方便。这里选择rest接口作为任务状态管理方式。
接口文档地:
5.2.1. 查询任务列表
GET http://<rm http address:port>/ws/v1/cluster/apps
参数:states=accepted,running,finished
查询条件过滤accepted,running,检查提交的任务是否在任务列表中。
5.2.2. 查询单个任务
如果任务已经接受了,生成了任务id,则可以直接根据任务id来查询任务状态
GET http://<rm http address:port>/ws/v1/cluster/apps/ application_1546828007170_0142
查询刚才任务执行的结果:
{
"app":{
"id":"application_1546828007170_0142",
"user":"csmsopr",
"name":"pi.py",
"queue":"default",
"state":"FINISHED",
"finalStatus":"SUCCEEDED",
"progress":100,
"trackingUI":"History",
"trackingUrl":"http://host281566:8088/proxy/application_1546828007170_0142/",
"diagnostics":"",
"clusterId":1546828007170,
"applicationType":"SPARK",
"applicationTags":"",
"startedTime":1548234101173,
"finishedTime":1548234115661,
"elapsedTime":14488,
"amContainerLogs":"http://host281567:8042/node/containerlogs/container_1546828007170_0142_01_000001/csmsopr",
"amHostHttpAddress":"host281567:8042",
"allocatedMB":-1,
"allocatedVCores":-1,
"runningContainers":-1,
"memorySeconds":51782,
"vcoreSeconds":32,
"preemptedResourceMB":0,
"preemptedResourceVCores":0,
"numNonAMContainerPreempted":0,
"numAMContainerPreempted":0
}
}
5.2.3. 任务状态管理
任务状态查询和结束
PUT http://<rm http address:port>/ws/v1/cluster/apps/ application_1546828007170_0142/state
返回
{
"state":"KILLED"
}
查询任务状态
GET http://<rm http address:port>/ws/v1/cluster/apps/ application_1546828007170_0142/state
返回:
{
"state":"ACCEPTED"
}
6. 参考资料
Spark中yarn模式两种提交任务方式 |
https://www.cnblogs.com/LHWorldBlog/p/8414342.html |
Hadoop接口文档 |
Docker中提交任务到Spark集群的更多相关文章
- Eclipse提交代码到Spark集群上运行
Spark集群master节点: 192.168.168.200 Eclipse运行windows主机: 192.168.168.100 场景: 为了测试在Eclipse上开发的代码在Spa ...
- H01-Linux系统中搭建Hadoop和Spark集群
前言 1.操作系统:Centos7 2.安装时使用的是root用户.也可以用其他非root用户,非root的话要注意操作时的权限问题. 3.安装的Hadoop版本是2.6.5,Spark版本是2.2. ...
- 在Docker中安装和部署MongoDB集群
此文已由作者袁欢授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. 在Docker中安装mongodb 采用的mongodb镜像:https://registry.hub.doc ...
- spark集群启动步骤及web ui查看
集群启动步骤:先启动HDFS系统,在启动spark集群,最后提交jar到spark集群执行. 1.hadoop启动cd /home/***/hadoop-2.7.4/sbinstart-all.sh ...
- 在Docker中从头部署自己的Spark集群
由于自己的电脑配置普普通通,在VM虚拟机中搭建的集群规模也就是6个节点左右,再多就会卡的不行 碰巧接触了Docker这种轻量级的容器虚拟化技术,理论上在普通PC机上搭建的集群规模可以达到很高(具体能有 ...
- 使用docker安装部署Spark集群来训练CNN(含Python实例)
使用docker安装部署Spark集群来训练CNN(含Python实例) http://blog.csdn.net/cyh_24/article/details/49683221 实验室有4台神服务器 ...
- Spark集群模式&Spark程序提交
Spark集群模式&Spark程序提交 1. 集群管理器 Spark当前支持三种集群管理方式 Standalone-Spark自带的一种集群管理方式,易于构建集群. Apache Mesos- ...
- docker 快速部署ES集群 spark集群
1) 拉下来 ES集群 spark集群 两套快速部署环境, 并只用docker跑起来,并保存到私库. 2)弄清楚怎么样打包 linux镜像(或者说制作). 3)试着改一下,让它们跑在集群里面. 4) ...
- 向Spark集群提交任务
1.启动spark集群. 启动Hadoop集群 cd /usr/local/hadoop/ sbin/start-all.sh 启动Spark的Master节点和所有slaves节点 cd /usr/ ...
随机推荐
- Java实现冗余路径Redundant Paths
Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numb ...
- java实现第六届蓝桥杯牌型整数
牌型整数 题目描述 小明被劫持到X赌城,被迫与其他3人玩牌. 一副扑克牌(去掉大小王牌,共52张),均匀发给4个人,每个人13张. 这时,小明脑子里突然冒出一个问题: 如果不考虑花色,只考虑点数,也不 ...
- PAT 科学计数法
科学计数法是科学家用来表示很大或很小的数字的一种方便的方法,其满足正则表达式 [+-][1-9].[0-9]+E[+-][0-9]+,即数字的整数部分只有 1 位,小数部分至少有 1 位,该数字及其指 ...
- 视频处理之OSD
欲观原文,请君移步 OSD简介 OSD,on-screen display的简称,即屏幕菜单式调节方式.一般我们按一下Menu键后屏幕弹出的显示器各项调节项目信息的矩形菜单,比如调亮度,色调,饱和度等 ...
- Mac卸载.net core sdk
NET Core cli提供了卸载脚本 https://github.com/dotnet/cli/tree/master/scripts/obtain/uninstall dotnet-uninst ...
- 源码分析(4)-ConcurrentHashMap(JDK1.8)
一.UML类图 ConcurrentHashMap键值不能为null:底层数据结构是数组+链表/红黑二叉树:采用CAS(比较并交换)和synchronized来保证并发安全. CAS文章:https: ...
- Python性能分析工具
import cProfile import pstats from flask import Flask,jsonify, request @app.route("/test", ...
- 防止暴力破解-DenyHosts应用
当你的linux服务器暴露在互联网之中,该服务器将会遭到互联网上的扫描软件进行扫描,并试图猜测SSH登录口令. 你会发现,每天会有多条SSH登录失败纪录.那些扫描工具将对你的服务器构成威胁,你必须 ...
- redis的5种数据结构和基本操作
1.字符串(string) 1.1设置值 set key value [ex seconds] [px milliseconds] [nx|xx] 例如: 127.0.0.1:6379> set ...
- [CF696D]Legen...
题目 点这里看题目. 分析 首先对于模式串建立 AC 自动机,并且计算出每个状态\(p\)的贡献总和\(con(p)\). 考虑一个朴素的 DP : \(f(i,p)\):当前串长度为 ...