2.在约会网站上使用k近邻算法
在约会网站上使用k近邻算法
思路步骤:
1. 收集数据:提供文本文件。
2. 准备数据:使用Python解析文本文件。
3. 分析数据:使用Matplotlib画二维扩散图。
4. 训练算法:此步骤不适用于k近邻算法。
5. 测试算法:使用海伦提供的部分数据作为测试样本。
测试样本和非测试样本的区别在于:测试样本是已经完成分类的数据,如果预测分类与实际类别不同,则标记为一个错误。
6. 使用算法:产生简单的命令行程序,然后海伦可以输入一些特征数据以判断对方是否为自己喜欢的类型。
正式开始:
第1步.收集数据,提供文本文件datingTestSet.txt:
- 40920 8.326976 0.953952 largeDoses
- 14488 7.153469 1.673904 smallDoses
- 26052 1.441871 0.805124 didntLike
- 75136 13.147394 0.428964 didntLike
- 38344 1.669788 0.134296 didntLike
- 72993 10.141740 1.032955 didntLike
- 35948 6.830792 1.213192 largeDoses
- 42666 13.276369 0.543880 largeDoses
- 67497 8.631577 0.749278 didntLike
- 35483 12.273169 1.508053 largeDoses
- 50242 3.723498 0.831917 didntLike
- 63275 8.385879 1.669485 didntLike
- 5569 4.875435 0.728658 smallDoses
- 51052 4.680098 0.625224 didntLike
- 77372 15.299570 0.331351 didntLike
- 43673 1.889461 0.191283 didntLike
- 61364 7.516754 1.269164 didntLike
- 69673 14.239195 0.261333 didntLike
- 15669 0.000000 1.250185 smallDoses
- 28488 10.528555 1.304844 largeDoses
- 6487 3.540265 0.822483 smallDoses
- 37708 2.991551 0.833920 didntLike
- 22620 5.297865 0.638306 smallDoses
- 28782 6.593803 0.187108 largeDoses
- 19739 2.816760 1.686209 smallDoses
- 36788 12.458258 0.649617 largeDoses
- 5741 0.000000 1.656418 smallDoses
- 28567 9.968648 0.731232 largeDoses
- 6808 1.364838 0.640103 smallDoses
- 41611 0.230453 1.151996 didntLike
- 36661 11.865402 0.882810 largeDoses
- 43605 0.120460 1.352013 didntLike
- 15360 8.545204 1.340429 largeDoses
- 63796 5.856649 0.160006 didntLike
- 10743 9.665618 0.778626 smallDoses
- 70808 9.778763 1.084103 didntLike
- 72011 4.932976 0.632026 didntLike
- 5914 2.216246 0.587095 smallDoses
- 14851 14.305636 0.632317 largeDoses
- 33553 12.591889 0.686581 largeDoses
- 44952 3.424649 1.004504 didntLike
- 17934 0.000000 0.147573 smallDoses
- 27738 8.533823 0.205324 largeDoses
- 29290 9.829528 0.238620 largeDoses
- 42330 11.492186 0.263499 largeDoses
- 36429 3.570968 0.832254 didntLike
- 39623 1.771228 0.207612 didntLike
- 32404 3.513921 0.991854 didntLike
- 27268 4.398172 0.975024 didntLike
- 5477 4.276823 1.174874 smallDoses
- 14254 5.946014 1.614244 smallDoses
- 68613 13.798970 0.724375 didntLike
- 41539 10.393591 1.663724 largeDoses
- 7917 3.007577 0.297302 smallDoses
- 21331 1.031938 0.486174 smallDoses
- 8338 4.751212 0.064693 smallDoses
- 5176 3.692269 1.655113 smallDoses
- 18983 10.448091 0.267652 largeDoses
- 68837 10.585786 0.329557 didntLike
- 13438 1.604501 0.069064 smallDoses
- 48849 3.679497 0.961466 didntLike
- 12285 3.795146 0.696694 smallDoses
- 7826 2.531885 1.659173 smallDoses
- 5565 9.733340 0.977746 smallDoses
- 10346 6.093067 1.413798 smallDoses
- 1823 7.712960 1.054927 smallDoses
- 9744 11.470364 0.760461 largeDoses
- 16857 2.886529 0.934416 smallDoses
- 39336 10.054373 1.138351 largeDoses
- 65230 9.972470 0.881876 didntLike
- 2463 2.335785 1.366145 smallDoses
- 27353 11.375155 1.528626 largeDoses
- 16191 0.000000 0.605619 smallDoses
- 12258 4.126787 0.357501 smallDoses
- 42377 6.319522 1.058602 didntLike
- 25607 8.680527 0.086955 largeDoses
- 77450 14.856391 1.129823 didntLike
- 58732 2.454285 0.222380 didntLike
- 46426 7.292202 0.548607 largeDoses
- 32688 8.745137 0.857348 largeDoses
- 64890 8.579001 0.683048 didntLike
- 8554 2.507302 0.869177 smallDoses
- 28861 11.415476 1.505466 largeDoses
- 42050 4.838540 1.680892 didntLike
- 32193 10.339507 0.583646 largeDoses
- 64895 6.573742 1.151433 didntLike
- 2355 6.539397 0.462065 smallDoses
- 0 2.209159 0.723567 smallDoses
- 70406 11.196378 0.836326 didntLike
- 57399 4.229595 0.128253 didntLike
- 41732 9.505944 0.005273 largeDoses
- 11429 8.652725 1.348934 largeDoses
- 75270 17.101108 0.490712 didntLike
- 5459 7.871839 0.717662 smallDoses
- 73520 8.262131 1.361646 didntLike
- 40279 9.015635 1.658555 largeDoses
- 21540 9.215351 0.806762 largeDoses
- 17694 6.375007 0.033678 smallDoses
- 22329 2.262014 1.022169 didntLike
- 46570 5.677110 0.709469 didntLike
- 42403 11.293017 0.207976 largeDoses
- 33654 6.590043 1.353117 didntLike
- 9171 4.711960 0.194167 smallDoses
- 28122 8.768099 1.108041 largeDoses
- 34095 11.502519 0.545097 largeDoses
- 1774 4.682812 0.578112 smallDoses
- 40131 12.446578 0.300754 largeDoses
- 13994 12.908384 1.657722 largeDoses
- 77064 12.601108 0.974527 didntLike
- 11210 3.929456 0.025466 smallDoses
- 6122 9.751503 1.182050 largeDoses
- 15341 3.043767 0.888168 smallDoses
- 44373 4.391522 0.807100 didntLike
- 28454 11.695276 0.679015 largeDoses
- 63771 7.879742 0.154263 didntLike
- 9217 5.613163 0.933632 smallDoses
- 69076 9.140172 0.851300 didntLike
- 24489 4.258644 0.206892 didntLike
- 16871 6.799831 1.221171 smallDoses
- 39776 8.752758 0.484418 largeDoses
- 5901 1.123033 1.180352 smallDoses
- 40987 10.833248 1.585426 largeDoses
- 7479 3.051618 0.026781 smallDoses
- 38768 5.308409 0.030683 largeDoses
- 4933 1.841792 0.028099 smallDoses
- 32311 2.261978 1.605603 didntLike
- 26501 11.573696 1.061347 largeDoses
- 37433 8.038764 1.083910 largeDoses
- 23503 10.734007 0.103715 largeDoses
- 68607 9.661909 0.350772 didntLike
- 27742 9.005850 0.548737 largeDoses
- 11303 0.000000 0.539131 smallDoses
- 0 5.757140 1.062373 smallDoses
- 32729 9.164656 1.624565 largeDoses
- 24619 1.318340 1.436243 didntLike
- 42414 14.075597 0.695934 largeDoses
- 20210 10.107550 1.308398 largeDoses
- 33225 7.960293 1.219760 largeDoses
- 54483 6.317292 0.018209 didntLike
- 18475 12.664194 0.595653 largeDoses
- 33926 2.906644 0.581657 didntLike
- 43865 2.388241 0.913938 didntLike
- 26547 6.024471 0.486215 largeDoses
- 44404 7.226764 1.255329 largeDoses
- 16674 4.183997 1.275290 smallDoses
- 8123 11.850211 1.096981 largeDoses
- 42747 11.661797 1.167935 largeDoses
- 56054 3.574967 0.494666 didntLike
- 10933 0.000000 0.107475 smallDoses
- 18121 7.937657 0.904799 largeDoses
- 11272 3.365027 1.014085 smallDoses
- 16297 0.000000 0.367491 smallDoses
- 28168 13.860672 1.293270 largeDoses
- 40963 10.306714 1.211594 largeDoses
- 31685 7.228002 0.670670 largeDoses
- 55164 4.508740 1.036192 didntLike
- 17595 0.366328 0.163652 smallDoses
- 1862 3.299444 0.575152 smallDoses
- 57087 0.573287 0.607915 didntLike
- 63082 9.183738 0.012280 didntLike
- 51213 7.842646 1.060636 largeDoses
- 6487 4.750964 0.558240 smallDoses
- 4805 11.438702 1.556334 largeDoses
- 30302 8.243063 1.122768 largeDoses
- 68680 7.949017 0.271865 didntLike
- 17591 7.875477 0.227085 smallDoses
- 74391 9.569087 0.364856 didntLike
- 37217 7.750103 0.869094 largeDoses
- 42814 0.000000 1.515293 didntLike
- 14738 3.396030 0.633977 smallDoses
- 19896 11.916091 0.025294 largeDoses
- 14673 0.460758 0.689586 smallDoses
- 32011 13.087566 0.476002 largeDoses
- 58736 4.589016 1.672600 didntLike
- 54744 8.397217 1.534103 didntLike
- 29482 5.562772 1.689388 didntLike
- 27698 10.905159 0.619091 largeDoses
- 11443 1.311441 1.169887 smallDoses
- 56117 10.647170 0.980141 largeDoses
- 39514 0.000000 0.481918 didntLike
- 26627 8.503025 0.830861 largeDoses
- 16525 0.436880 1.395314 smallDoses
- 24368 6.127867 1.102179 didntLike
- 22160 12.112492 0.359680 largeDoses
- 6030 1.264968 1.141582 smallDoses
- 6468 6.067568 1.327047 smallDoses
- 22945 8.010964 1.681648 largeDoses
- 18520 3.791084 0.304072 smallDoses
- 34914 11.773195 1.262621 largeDoses
- 6121 8.339588 1.443357 smallDoses
- 38063 2.563092 1.464013 didntLike
- 23410 5.954216 0.953782 didntLike
- 35073 9.288374 0.767318 largeDoses
- 52914 3.976796 1.043109 didntLike
- 16801 8.585227 1.455708 largeDoses
- 9533 1.271946 0.796506 smallDoses
- 16721 0.000000 0.242778 smallDoses
- 5832 0.000000 0.089749 smallDoses
- 44591 11.521298 0.300860 largeDoses
- 10143 1.139447 0.415373 smallDoses
- 21609 5.699090 1.391892 smallDoses
- 23817 2.449378 1.322560 didntLike
- 15640 0.000000 1.228380 smallDoses
- 8847 3.168365 0.053993 smallDoses
- 50939 10.428610 1.126257 largeDoses
- 28521 2.943070 1.446816 didntLike
- 32901 10.441348 0.975283 largeDoses
- 42850 12.478764 1.628726 largeDoses
- 13499 5.856902 0.363883 smallDoses
- 40345 2.476420 0.096075 didntLike
- 43547 1.826637 0.811457 didntLike
- 70758 4.324451 0.328235 didntLike
- 19780 1.376085 1.178359 smallDoses
- 44484 5.342462 0.394527 didntLike
- 54462 11.835521 0.693301 largeDoses
- 20085 12.423687 1.424264 largeDoses
- 42291 12.161273 0.071131 largeDoses
- 47550 8.148360 1.649194 largeDoses
- 11938 1.531067 1.549756 smallDoses
- 40699 3.200912 0.309679 didntLike
- 70908 8.862691 0.530506 didntLike
- 73989 6.370551 0.369350 didntLike
- 11872 2.468841 0.145060 smallDoses
- 48463 11.054212 0.141508 largeDoses
- 15987 2.037080 0.715243 smallDoses
- 70036 13.364030 0.549972 didntLike
- 32967 10.249135 0.192735 largeDoses
- 63249 10.464252 1.669767 didntLike
- 42795 9.424574 0.013725 largeDoses
- 14459 4.458902 0.268444 smallDoses
- 19973 0.000000 0.575976 smallDoses
- 5494 9.686082 1.029808 largeDoses
- 67902 13.649402 1.052618 didntLike
- 25621 13.181148 0.273014 largeDoses
- 27545 3.877472 0.401600 didntLike
- 58656 1.413952 0.451380 didntLike
- 7327 4.248986 1.430249 smallDoses
- 64555 8.779183 0.845947 didntLike
- 8998 4.156252 0.097109 smallDoses
- 11752 5.580018 0.158401 smallDoses
- 76319 15.040440 1.366898 didntLike
- 27665 12.793870 1.307323 largeDoses
- 67417 3.254877 0.669546 didntLike
- 21808 10.725607 0.588588 largeDoses
- 15326 8.256473 0.765891 smallDoses
- 20057 8.033892 1.618562 largeDoses
- 79341 10.702532 0.204792 didntLike
- 15636 5.062996 1.132555 smallDoses
- 35602 10.772286 0.668721 largeDoses
- 28544 1.892354 0.837028 didntLike
- 57663 1.019966 0.372320 didntLike
- 78727 15.546043 0.729742 didntLike
- 68255 11.638205 0.409125 didntLike
- 14964 3.427886 0.975616 smallDoses
- 21835 11.246174 1.475586 largeDoses
- 7487 0.000000 0.645045 smallDoses
- 8700 0.000000 1.424017 smallDoses
- 26226 8.242553 0.279069 largeDoses
- 65899 8.700060 0.101807 didntLike
- 6543 0.812344 0.260334 smallDoses
- 46556 2.448235 1.176829 didntLike
- 71038 13.230078 0.616147 didntLike
- 47657 0.236133 0.340840 didntLike
- 19600 11.155826 0.335131 largeDoses
- 37422 11.029636 0.505769 largeDoses
- 1363 2.901181 1.646633 smallDoses
- 26535 3.924594 1.143120 didntLike
- 47707 2.524806 1.292848 didntLike
- 38055 3.527474 1.449158 didntLike
- 6286 3.384281 0.889268 smallDoses
- 10747 0.000000 1.107592 smallDoses
- 44883 11.898890 0.406441 largeDoses
- 56823 3.529892 1.375844 didntLike
- 68086 11.442677 0.696919 didntLike
- 70242 10.308145 0.422722 didntLike
- 11409 8.540529 0.727373 smallDoses
- 67671 7.156949 1.691682 didntLike
- 61238 0.720675 0.847574 didntLike
- 17774 0.229405 1.038603 smallDoses
- 53376 3.399331 0.077501 didntLike
- 30930 6.157239 0.580133 didntLike
- 28987 1.239698 0.719989 didntLike
- 13655 6.036854 0.016548 smallDoses
- 7227 5.258665 0.933722 smallDoses
- 40409 12.393001 1.571281 largeDoses
- 13605 9.627613 0.935842 smallDoses
- 26400 11.130453 0.597610 largeDoses
- 13491 8.842595 0.349768 largeDoses
- 30232 10.690010 1.456595 largeDoses
- 43253 5.714718 1.674780 largeDoses
- 55536 3.052505 1.335804 didntLike
- 8807 0.000000 0.059025 smallDoses
- 25783 9.945307 1.287952 largeDoses
- 22812 2.719723 1.142148 didntLike
- 77826 11.154055 1.608486 didntLike
- 38172 2.687918 0.660836 didntLike
- 31676 10.037847 0.962245 largeDoses
- 74038 12.404762 1.112080 didntLike
- 44738 10.237305 0.633422 largeDoses
- 17410 4.745392 0.662520 smallDoses
- 5688 4.639461 1.569431 smallDoses
- 36642 3.149310 0.639669 didntLike
- 29956 13.406875 1.639194 largeDoses
- 60350 6.068668 0.881241 didntLike
- 23758 9.477022 0.899002 largeDoses
- 25780 3.897620 0.560201 smallDoses
- 11342 5.463615 1.203677 smallDoses
- 36109 3.369267 1.575043 didntLike
- 14292 5.234562 0.825954 smallDoses
- 11160 0.000000 0.722170 smallDoses
- 23762 12.979069 0.504068 largeDoses
- 39567 5.376564 0.557476 didntLike
- 25647 13.527910 1.586732 largeDoses
- 14814 2.196889 0.784587 smallDoses
- 73590 10.691748 0.007509 didntLike
- 35187 1.659242 0.447066 didntLike
- 49459 8.369667 0.656697 largeDoses
- 31657 13.157197 0.143248 largeDoses
- 6259 8.199667 0.908508 smallDoses
- 33101 4.441669 0.439381 largeDoses
- 27107 9.846492 0.644523 largeDoses
- 17824 0.019540 0.977949 smallDoses
- 43536 8.253774 0.748700 largeDoses
- 67705 6.038620 1.509646 didntLike
- 35283 6.091587 1.694641 largeDoses
- 71308 8.986820 1.225165 didntLike
- 31054 11.508473 1.624296 largeDoses
- 52387 8.807734 0.713922 largeDoses
- 40328 0.000000 0.816676 didntLike
- 34844 8.889202 1.665414 largeDoses
- 11607 3.178117 0.542752 smallDoses
- 64306 7.013795 0.139909 didntLike
- 32721 9.605014 0.065254 largeDoses
- 33170 1.230540 1.331674 didntLike
- 37192 10.412811 0.890803 largeDoses
- 13089 0.000000 0.567161 smallDoses
- 66491 9.699991 0.122011 didntLike
- 15941 0.000000 0.061191 smallDoses
- 4272 4.455293 0.272135 smallDoses
- 48812 3.020977 1.502803 didntLike
- 28818 8.099278 0.216317 largeDoses
- 35394 1.157764 1.603217 didntLike
- 71791 10.105396 0.121067 didntLike
- 40668 11.230148 0.408603 largeDoses
- 39580 9.070058 0.011379 largeDoses
- 11786 0.566460 0.478837 smallDoses
- 19251 0.000000 0.487300 smallDoses
- 56594 8.956369 1.193484 largeDoses
- 54495 1.523057 0.620528 didntLike
- 11844 2.749006 0.169855 smallDoses
- 45465 9.235393 0.188350 largeDoses
- 31033 10.555573 0.403927 largeDoses
- 16633 6.956372 1.519308 smallDoses
- 13887 0.636281 1.273984 smallDoses
- 52603 3.574737 0.075163 didntLike
- 72000 9.032486 1.461809 didntLike
- 68497 5.958993 0.023012 didntLike
- 35135 2.435300 1.211744 didntLike
- 26397 10.539731 1.638248 largeDoses
- 7313 7.646702 0.056513 smallDoses
- 91273 20.919349 0.644571 didntLike
- 24743 1.424726 0.838447 didntLike
- 31690 6.748663 0.890223 largeDoses
- 15432 2.289167 0.114881 smallDoses
- 58394 5.548377 0.402238 didntLike
- 33962 6.057227 0.432666 didntLike
- 31442 10.828595 0.559955 largeDoses
- 31044 11.318160 0.271094 largeDoses
- 29938 13.265311 0.633903 largeDoses
- 9875 0.000000 1.496715 smallDoses
- 51542 6.517133 0.402519 largeDoses
- 11878 4.934374 1.520028 smallDoses
- 69241 10.151738 0.896433 didntLike
- 37776 2.425781 1.559467 didntLike
- 68997 9.778962 1.195498 didntLike
- 67416 12.219950 0.657677 didntLike
- 59225 7.394151 0.954434 didntLike
- 29138 8.518535 0.742546 largeDoses
- 5962 2.798700 0.662632 smallDoses
- 10847 0.637930 0.617373 smallDoses
- 70527 10.750490 0.097415 didntLike
- 9610 0.625382 0.140969 smallDoses
- 64734 10.027968 0.282787 didntLike
- 25941 9.817347 0.364197 largeDoses
- 2763 0.646828 1.266069 smallDoses
- 55601 3.347111 0.914294 didntLike
- 31128 11.816892 0.193798 largeDoses
- 5181 0.000000 1.480198 smallDoses
- 69982 10.945666 0.993219 didntLike
- 52440 10.244706 0.280539 largeDoses
- 57350 2.579801 1.149172 didntLike
- 57869 2.630410 0.098869 didntLike
- 56557 11.746200 1.695517 largeDoses
- 42342 8.104232 1.326277 largeDoses
- 15560 12.409743 0.790295 largeDoses
- 34826 12.167844 1.328086 largeDoses
- 8569 3.198408 0.299287 smallDoses
- 77623 16.055513 0.541052 didntLike
- 78184 7.138659 0.158481 didntLike
- 7036 4.831041 0.761419 smallDoses
- 69616 10.082890 1.373611 didntLike
- 21546 10.066867 0.788470 largeDoses
- 36715 8.129538 0.329913 largeDoses
- 20522 3.012463 1.138108 smallDoses
- 42349 3.720391 0.845974 didntLike
- 9037 0.773493 1.148256 smallDoses
- 26728 10.962941 1.037324 largeDoses
- 587 0.177621 0.162614 smallDoses
- 48915 3.085853 0.967899 didntLike
- 9824 8.426781 0.202558 smallDoses
- 4135 1.825927 1.128347 smallDoses
- 9666 2.185155 1.010173 smallDoses
- 59333 7.184595 1.261338 didntLike
- 36198 0.000000 0.116525 didntLike
- 34909 8.901752 1.033527 largeDoses
- 47516 2.451497 1.358795 didntLike
- 55807 3.213631 0.432044 didntLike
- 14036 3.974739 0.723929 smallDoses
- 42856 9.601306 0.619232 largeDoses
- 64007 8.363897 0.445341 didntLike
- 59428 6.381484 1.365019 didntLike
- 13730 0.000000 1.403914 smallDoses
- 41740 9.609836 1.438105 largeDoses
- 63546 9.904741 0.985862 didntLike
- 30417 7.185807 1.489102 largeDoses
- 69636 5.466703 1.216571 didntLike
- 64660 0.000000 0.915898 didntLike
- 14883 4.575443 0.535671 smallDoses
- 7965 3.277076 1.010868 smallDoses
- 68620 10.246623 1.239634 didntLike
- 8738 2.341735 1.060235 smallDoses
- 7544 3.201046 0.498843 smallDoses
- 6377 6.066013 0.120927 smallDoses
- 36842 8.829379 0.895657 largeDoses
- 81046 15.833048 1.568245 didntLike
- 67736 13.516711 1.220153 didntLike
- 32492 0.664284 1.116755 didntLike
- 39299 6.325139 0.605109 largeDoses
- 77289 8.677499 0.344373 didntLike
- 33835 8.188005 0.964896 largeDoses
- 71890 9.414263 0.384030 didntLike
- 32054 9.196547 1.138253 largeDoses
- 38579 10.202968 0.452363 largeDoses
- 55984 2.119439 1.481661 didntLike
- 72694 13.635078 0.858314 didntLike
- 42299 0.083443 0.701669 didntLike
- 26635 9.149096 1.051446 largeDoses
- 8579 1.933803 1.374388 smallDoses
- 37302 14.115544 0.676198 largeDoses
- 22878 8.933736 0.943352 largeDoses
- 4364 2.661254 0.946117 smallDoses
- 4985 0.988432 1.305027 smallDoses
- 37068 2.063741 1.125946 didntLike
- 41137 2.220590 0.690754 didntLike
- 67759 6.424849 0.806641 didntLike
- 11831 1.156153 1.613674 smallDoses
- 34502 3.032720 0.601847 didntLike
- 4088 3.076828 0.952089 smallDoses
- 15199 0.000000 0.318105 smallDoses
- 17309 7.750480 0.554015 largeDoses
- 42816 10.958135 1.482500 largeDoses
- 43751 10.222018 0.488678 largeDoses
- 58335 2.367988 0.435741 didntLike
- 75039 7.686054 1.381455 didntLike
- 42878 11.464879 1.481589 largeDoses
- 42770 11.075735 0.089726 largeDoses
- 8848 3.543989 0.345853 smallDoses
- 31340 8.123889 1.282880 largeDoses
- 41413 4.331769 0.754467 largeDoses
- 12731 0.120865 1.211961 smallDoses
- 22447 6.116109 0.701523 largeDoses
- 33564 7.474534 0.505790 largeDoses
- 48907 8.819454 0.649292 largeDoses
- 8762 6.802144 0.615284 smallDoses
- 46696 12.666325 0.931960 largeDoses
- 36851 8.636180 0.399333 largeDoses
- 67639 11.730991 1.289833 didntLike
- 171 8.132449 0.039062 smallDoses
- 26674 10.296589 1.496144 largeDoses
- 8739 7.583906 1.005764 smallDoses
- 66668 9.777806 0.496377 didntLike
- 68732 8.833546 0.513876 didntLike
- 69995 4.907899 1.518036 didntLike
- 82008 8.362736 1.285939 didntLike
- 25054 9.084726 1.606312 largeDoses
- 33085 14.164141 0.560970 largeDoses
- 41379 9.080683 0.989920 largeDoses
- 39417 6.522767 0.038548 largeDoses
- 12556 3.690342 0.462281 smallDoses
- 39432 3.563706 0.242019 didntLike
- 38010 1.065870 1.141569 didntLike
- 69306 6.683796 1.456317 didntLike
- 38000 1.712874 0.243945 didntLike
- 46321 13.109929 1.280111 largeDoses
- 66293 11.327910 0.780977 didntLike
- 22730 4.545711 1.233254 didntLike
- 5952 3.367889 0.468104 smallDoses
- 72308 8.326224 0.567347 didntLike
- 60338 8.978339 1.442034 didntLike
- 13301 5.655826 1.582159 smallDoses
- 27884 8.855312 0.570684 largeDoses
- 11188 6.649568 0.544233 smallDoses
- 56796 3.966325 0.850410 didntLike
- 8571 1.924045 1.664782 smallDoses
- 4914 6.004812 0.280369 smallDoses
- 10784 0.000000 0.375849 smallDoses
- 39296 9.923018 0.092192 largeDoses
- 13113 2.389084 0.119284 smallDoses
- 70204 13.663189 0.133251 didntLike
- 46813 11.434976 0.321216 largeDoses
- 11697 0.358270 1.292858 smallDoses
- 44183 9.598873 0.223524 largeDoses
- 2225 6.375275 0.608040 smallDoses
- 29066 11.580532 0.458401 largeDoses
- 4245 5.319324 1.598070 smallDoses
- 34379 4.324031 1.603481 didntLike
- 44441 2.358370 1.273204 didntLike
- 2022 0.000000 1.182708 smallDoses
- 26866 12.824376 0.890411 largeDoses
- 57070 1.587247 1.456982 didntLike
- 32932 8.510324 1.520683 largeDoses
- 51967 10.428884 1.187734 largeDoses
- 44432 8.346618 0.042318 largeDoses
- 67066 7.541444 0.809226 didntLike
- 17262 2.540946 1.583286 smallDoses
- 79728 9.473047 0.692513 didntLike
- 14259 0.352284 0.474080 smallDoses
- 6122 0.000000 0.589826 smallDoses
- 76879 12.405171 0.567201 didntLike
- 11426 4.126775 0.871452 smallDoses
- 2493 0.034087 0.335848 smallDoses
- 19910 1.177634 0.075106 smallDoses
- 10939 0.000000 0.479996 smallDoses
- 17716 0.994909 0.611135 smallDoses
- 31390 11.053664 1.180117 largeDoses
- 20375 0.000000 1.679729 smallDoses
- 26309 2.495011 1.459589 didntLike
- 33484 11.516831 0.001156 largeDoses
- 45944 9.213215 0.797743 largeDoses
- 4249 5.332865 0.109288 smallDoses
- 6089 0.000000 1.689771 smallDoses
- 7513 0.000000 1.126053 smallDoses
- 27862 12.640062 1.690903 largeDoses
- 39038 2.693142 1.317518 didntLike
- 19218 3.328969 0.268271 smallDoses
- 62911 7.193166 1.117456 didntLike
- 77758 6.615512 1.521012 didntLike
- 27940 8.000567 0.835341 largeDoses
- 2194 4.017541 0.512104 smallDoses
- 37072 13.245859 0.927465 largeDoses
- 15585 5.970616 0.813624 smallDoses
- 25577 11.668719 0.886902 largeDoses
- 8777 4.283237 1.272728 smallDoses
- 29016 10.742963 0.971401 largeDoses
- 21910 12.326672 1.592608 largeDoses
- 12916 0.000000 0.344622 smallDoses
- 10976 0.000000 0.922846 smallDoses
- 79065 10.602095 0.573686 didntLike
- 36759 10.861859 1.155054 largeDoses
- 50011 1.229094 1.638690 didntLike
- 1155 0.410392 1.313401 smallDoses
- 71600 14.552711 0.616162 didntLike
- 30817 14.178043 0.616313 largeDoses
- 54559 14.136260 0.362388 didntLike
- 29764 0.093534 1.207194 didntLike
- 69100 10.929021 0.403110 didntLike
- 47324 11.432919 0.825959 largeDoses
- 73199 9.134527 0.586846 didntLike
- 44461 5.071432 1.421420 didntLike
- 45617 11.460254 1.541749 largeDoses
- 28221 11.620039 1.103553 largeDoses
- 7091 4.022079 0.207307 smallDoses
- 6110 3.057842 1.631262 smallDoses
- 79016 7.782169 0.404385 didntLike
- 18289 7.981741 0.929789 largeDoses
- 43679 4.601363 0.268326 didntLike
- 22075 2.595564 1.115375 didntLike
- 23535 10.049077 0.391045 largeDoses
- 25301 3.265444 1.572970 smallDoses
- 32256 11.780282 1.511014 largeDoses
- 36951 3.075975 0.286284 didntLike
- 31290 1.795307 0.194343 didntLike
- 38953 11.106979 0.202415 largeDoses
- 35257 5.994413 0.800021 didntLike
- 25847 9.706062 1.012182 largeDoses
- 32680 10.582992 0.836025 largeDoses
- 62018 7.038266 1.458979 didntLike
- 9074 0.023771 0.015314 smallDoses
- 33004 12.823982 0.676371 largeDoses
- 44588 3.617770 0.493483 didntLike
- 32565 8.346684 0.253317 largeDoses
- 38563 6.104317 0.099207 didntLike
- 75668 16.207776 0.584973 didntLike
- 9069 6.401969 1.691873 smallDoses
- 53395 2.298696 0.559757 didntLike
- 28631 7.661515 0.055981 largeDoses
- 71036 6.353608 1.645301 didntLike
- 71142 10.442780 0.335870 didntLike
- 37653 3.834509 1.346121 didntLike
- 76839 10.998587 0.584555 didntLike
- 9916 2.695935 1.512111 smallDoses
- 38889 3.356646 0.324230 didntLike
- 39075 14.677836 0.793183 largeDoses
- 48071 1.551934 0.130902 didntLike
- 7275 2.464739 0.223502 smallDoses
- 41804 1.533216 1.007481 didntLike
- 35665 12.473921 0.162910 largeDoses
- 67956 6.491596 0.032576 didntLike
- 41892 10.506276 1.510747 largeDoses
- 38844 4.380388 0.748506 didntLike
- 74197 13.670988 1.687944 didntLike
- 14201 8.317599 0.390409 smallDoses
- 3908 0.000000 0.556245 smallDoses
- 2459 0.000000 0.290218 smallDoses
- 32027 10.095799 1.188148 largeDoses
- 12870 0.860695 1.482632 smallDoses
- 9880 1.557564 0.711278 smallDoses
- 72784 10.072779 0.756030 didntLike
- 17521 0.000000 0.431468 smallDoses
- 50283 7.140817 0.883813 largeDoses
- 33536 11.384548 1.438307 largeDoses
- 9452 3.214568 1.083536 smallDoses
- 37457 11.720655 0.301636 largeDoses
- 17724 6.374475 1.475925 largeDoses
- 43869 5.749684 0.198875 largeDoses
- 264 3.871808 0.552602 smallDoses
- 25736 8.336309 0.636238 largeDoses
- 39584 9.710442 1.503735 largeDoses
- 31246 1.532611 1.433898 didntLike
- 49567 9.785785 0.984614 largeDoses
- 7052 2.633627 1.097866 smallDoses
- 35493 9.238935 0.494701 largeDoses
- 10986 1.205656 1.398803 smallDoses
- 49508 3.124909 1.670121 didntLike
- 5734 7.935489 1.585044 smallDoses
- 65479 12.746636 1.560352 didntLike
- 77268 10.732563 0.545321 didntLike
- 28490 3.977403 0.766103 didntLike
- 13546 4.194426 0.450663 smallDoses
- 37166 9.610286 0.142912 largeDoses
- 16381 4.797555 1.260455 smallDoses
- 10848 1.615279 0.093002 smallDoses
- 35405 4.614771 1.027105 didntLike
- 15917 0.000000 1.369726 smallDoses
- 6131 0.608457 0.512220 smallDoses
- 67432 6.558239 0.667579 didntLike
- 30354 12.315116 0.197068 largeDoses
- 69696 7.014973 1.494616 didntLike
- 33481 8.822304 1.194177 largeDoses
- 43075 10.086796 0.570455 largeDoses
- 38343 7.241614 1.661627 largeDoses
- 14318 4.602395 1.511768 smallDoses
- 5367 7.434921 0.079792 smallDoses
- 37894 10.467570 1.595418 largeDoses
- 36172 9.948127 0.003663 largeDoses
- 40123 2.478529 1.568987 didntLike
- 10976 5.938545 0.878540 smallDoses
- 12705 0.000000 0.948004 smallDoses
- 12495 5.559181 1.357926 smallDoses
- 35681 9.776654 0.535966 largeDoses
- 46202 3.092056 0.490906 didntLike
- 11505 0.000000 1.623311 smallDoses
- 22834 4.459495 0.538867 didntLike
- 49901 8.334306 1.646600 largeDoses
- 71932 11.226654 0.384686 didntLike
- 13279 3.904737 1.597294 smallDoses
- 49112 7.038205 1.211329 largeDoses
- 77129 9.836120 1.054340 didntLike
- 37447 1.990976 0.378081 didntLike
- 62397 9.005302 0.485385 didntLike
- 0 1.772510 1.039873 smallDoses
- 15476 0.458674 0.819560 smallDoses
- 40625 10.003919 0.231658 largeDoses
- 36706 0.520807 1.476008 didntLike
- 28580 10.678214 1.431837 largeDoses
- 25862 4.425992 1.363842 didntLike
- 63488 12.035355 0.831222 didntLike
- 33944 10.606732 1.253858 largeDoses
- 30099 1.568653 0.684264 didntLike
- 13725 2.545434 0.024271 smallDoses
- 36768 10.264062 0.982593 largeDoses
- 64656 9.866276 0.685218 didntLike
- 14927 0.142704 0.057455 smallDoses
- 43231 9.853270 1.521432 largeDoses
- 66087 6.596604 1.653574 didntLike
- 19806 2.602287 1.321481 smallDoses
- 41081 10.411776 0.664168 largeDoses
- 10277 7.083449 0.622589 smallDoses
- 7014 2.080068 1.254441 smallDoses
- 17275 0.522844 1.622458 smallDoses
- 31600 10.362000 1.544827 largeDoses
- 59956 3.412967 1.035410 didntLike
- 42181 6.796548 1.112153 largeDoses
- 51743 4.092035 0.075804 didntLike
- 5194 2.763811 1.564325 smallDoses
- 30832 12.547439 1.402443 largeDoses
- 7976 5.708052 1.596152 smallDoses
- 14602 4.558025 0.375806 smallDoses
- 41571 11.642307 0.438553 largeDoses
- 55028 3.222443 0.121399 didntLike
- 5837 4.736156 0.029871 smallDoses
- 39808 10.839526 0.836323 largeDoses
- 20944 4.194791 0.235483 smallDoses
- 22146 14.936259 0.888582 largeDoses
- 42169 3.310699 1.521855 didntLike
- 7010 2.971931 0.034321 smallDoses
- 3807 9.261667 0.537807 smallDoses
- 29241 7.791833 1.111416 largeDoses
- 52696 1.480470 1.028750 didntLike
- 42545 3.677287 0.244167 didntLike
- 24437 2.202967 1.370399 didntLike
- 16037 5.796735 0.935893 smallDoses
- 8493 3.063333 0.144089 smallDoses
- 68080 11.233094 0.492487 didntLike
- 59016 1.965570 0.005697 didntLike
- 11810 8.616719 0.137419 smallDoses
- 68630 6.609989 1.083505 didntLike
- 7629 1.712639 1.086297 smallDoses
- 71992 10.117445 1.299319 didntLike
- 13398 0.000000 1.104178 smallDoses
- 26241 9.824777 1.346821 largeDoses
- 11160 1.653089 0.980949 smallDoses
- 76701 18.178822 1.473671 didntLike
- 32174 6.781126 0.885340 largeDoses
- 45043 8.206750 1.549223 largeDoses
- 42173 10.081853 1.376745 largeDoses
- 69801 6.288742 0.112799 didntLike
- 41737 3.695937 1.543589 didntLike
- 46979 6.726151 1.069380 largeDoses
- 79267 12.969999 1.568223 didntLike
- 4615 2.661390 1.531933 smallDoses
- 32907 7.072764 1.117386 largeDoses
- 37444 9.123366 1.318988 largeDoses
- 569 3.743946 1.039546 smallDoses
- 8723 2.341300 0.219361 smallDoses
- 6024 0.541913 0.592348 smallDoses
- 52252 2.310828 1.436753 didntLike
- 8358 6.226597 1.427316 smallDoses
- 26166 7.277876 0.489252 largeDoses
- 18471 0.000000 0.389459 smallDoses
- 3386 7.218221 1.098828 smallDoses
- 41544 8.777129 1.111464 largeDoses
- 10480 2.813428 0.819419 smallDoses
- 5894 2.268766 1.412130 smallDoses
- 7273 6.283627 0.571292 smallDoses
- 22272 7.520081 1.626868 largeDoses
- 31369 11.739225 0.027138 largeDoses
- 10708 3.746883 0.877350 smallDoses
- 69364 12.089835 0.521631 didntLike
- 37760 12.310404 0.259339 largeDoses
- 13004 0.000000 0.671355 smallDoses
- 37885 2.728800 0.331502 didntLike
- 52555 10.814342 0.607652 largeDoses
- 38997 12.170268 0.844205 largeDoses
- 69698 6.698371 0.240084 didntLike
- 11783 3.632672 1.643479 smallDoses
- 47636 10.059991 0.892361 largeDoses
- 15744 1.887674 0.756162 smallDoses
- 69058 8.229125 0.195886 didntLike
- 33057 7.817082 0.476102 largeDoses
- 28681 12.277230 0.076805 largeDoses
- 34042 10.055337 1.115778 largeDoses
- 29928 3.596002 1.485952 didntLike
- 9734 2.755530 1.420655 smallDoses
- 7344 7.780991 0.513048 smallDoses
- 7387 0.093705 0.391834 smallDoses
- 33957 8.481567 0.520078 largeDoses
- 9936 3.865584 0.110062 smallDoses
- 36094 9.683709 0.779984 largeDoses
- 39835 10.617255 1.359970 largeDoses
- 64486 7.203216 1.624762 didntLike
- 0 7.601414 1.215605 smallDoses
- 39539 1.386107 1.417070 didntLike
- 66972 9.129253 0.594089 didntLike
- 15029 1.363447 0.620841 smallDoses
- 44909 3.181399 0.359329 didntLike
- 38183 13.365414 0.217011 largeDoses
- 37372 4.207717 1.289767 didntLike
- 0 4.088395 0.870075 smallDoses
- 17786 3.327371 1.142505 smallDoses
- 39055 1.303323 1.235650 didntLike
- 37045 7.999279 1.581763 largeDoses
- 6435 2.217488 0.864536 smallDoses
- 72265 7.751808 0.192451 didntLike
- 28152 14.149305 1.591532 largeDoses
- 25931 8.765721 0.152808 largeDoses
- 7538 3.408996 0.184896 smallDoses
- 1315 1.251021 0.112340 smallDoses
- 12292 6.160619 1.537165 smallDoses
- 49248 1.034538 1.585162 didntLike
- 9025 0.000000 1.034635 smallDoses
- 13438 2.355051 0.542603 smallDoses
- 69683 6.614543 0.153771 didntLike
- 25374 10.245062 1.450903 largeDoses
- 55264 3.467074 1.231019 didntLike
- 38324 7.487678 1.572293 largeDoses
- 69643 4.624115 1.185192 didntLike
- 44058 8.995957 1.436479 largeDoses
- 41316 11.564476 0.007195 largeDoses
- 29119 3.440948 0.078331 didntLike
- 51656 1.673603 0.732746 didntLike
- 3030 4.719341 0.699755 smallDoses
- 35695 10.304798 1.576488 largeDoses
- 1537 2.086915 1.199312 smallDoses
- 9083 6.338220 1.131305 smallDoses
- 47744 8.254926 0.710694 largeDoses
- 71372 16.067108 0.974142 didntLike
- 37980 1.723201 0.310488 didntLike
- 42385 3.785045 0.876904 didntLike
- 22687 2.557561 0.123738 didntLike
- 39512 9.852220 1.095171 largeDoses
- 11885 3.679147 1.557205 smallDoses
- 4944 9.789681 0.852971 smallDoses
- 73230 14.958998 0.526707 didntLike
- 17585 11.182148 1.288459 largeDoses
- 68737 7.528533 1.657487 didntLike
- 13818 5.253802 1.378603 smallDoses
- 31662 13.946752 1.426657 largeDoses
- 86686 15.557263 1.430029 didntLike
- 43214 12.483550 0.688513 largeDoses
- 24091 2.317302 1.411137 didntLike
- 52544 10.069724 0.766119 largeDoses
- 61861 5.792231 1.615483 didntLike
- 47903 4.138435 0.475994 didntLike
- 37190 12.929517 0.304378 largeDoses
- 6013 9.378238 0.307392 smallDoses
- 27223 8.361362 1.643204 largeDoses
- 69027 7.939406 1.325042 didntLike
- 78642 10.735384 0.705788 didntLike
- 30254 11.592723 0.286188 largeDoses
- 21704 10.098356 0.704748 largeDoses
- 34985 9.299025 0.545337 largeDoses
- 31316 11.158297 0.218067 largeDoses
- 76368 16.143900 0.558388 didntLike
- 27953 10.971700 1.221787 largeDoses
- 152 0.000000 0.681478 smallDoses
- 9146 3.178961 1.292692 smallDoses
- 75346 17.625350 0.339926 didntLike
- 26376 1.995833 0.267826 didntLike
- 35255 10.640467 0.416181 largeDoses
- 19198 9.628339 0.985462 largeDoses
- 12518 4.662664 0.495403 smallDoses
- 25453 5.754047 1.382742 smallDoses
- 12530 0.000000 0.037146 smallDoses
- 62230 9.334332 0.198118 didntLike
- 9517 3.846162 0.619968 smallDoses
- 71161 10.685084 0.678179 didntLike
- 1593 4.752134 0.359205 smallDoses
- 33794 0.697630 0.966786 didntLike
- 39710 10.365836 0.505898 largeDoses
- 16941 0.461478 0.352865 smallDoses
- 69209 11.339537 1.068740 didntLike
- 4446 5.420280 0.127310 smallDoses
- 9347 3.469955 1.619947 smallDoses
- 55635 8.517067 0.994858 largeDoses
- 65889 8.306512 0.413690 didntLike
- 10753 2.628690 0.444320 smallDoses
- 7055 0.000000 0.802985 smallDoses
- 7905 0.000000 1.170397 smallDoses
- 53447 7.298767 1.582346 largeDoses
- 9194 7.331319 1.277988 smallDoses
- 61914 9.392269 0.151617 didntLike
- 15630 5.541201 1.180596 smallDoses
- 79194 15.149460 0.537540 didntLike
- 12268 5.515189 0.250562 smallDoses
- 33682 7.728898 0.920494 largeDoses
- 26080 11.318785 1.510979 largeDoses
- 19119 3.574709 1.531514 smallDoses
- 30902 7.350965 0.026332 largeDoses
- 63039 7.122363 1.630177 didntLike
- 51136 1.828412 1.013702 didntLike
- 35262 10.117989 1.156862 largeDoses
- 42776 11.309897 0.086291 largeDoses
- 64191 8.342034 1.388569 didntLike
- 15436 0.241714 0.715577 smallDoses
- 14402 10.482619 1.694972 smallDoses
- 6341 9.289510 1.428879 smallDoses
- 14113 4.269419 0.134181 smallDoses
- 6390 0.000000 0.189456 smallDoses
- 8794 0.817119 0.143668 smallDoses
- 43432 1.508394 0.652651 didntLike
- 38334 9.359918 0.052262 largeDoses
- 34068 10.052333 0.550423 largeDoses
- 30819 11.111660 0.989159 largeDoses
- 22239 11.265971 0.724054 largeDoses
- 28725 10.383830 0.254836 largeDoses
- 57071 3.878569 1.377983 didntLike
- 72420 13.679237 0.025346 didntLike
- 28294 10.526846 0.781569 largeDoses
- 9896 0.000000 0.924198 smallDoses
- 65821 4.106727 1.085669 didntLike
- 7645 8.118856 1.470686 smallDoses
- 71289 7.796874 0.052336 didntLike
- 5128 2.789669 1.093070 smallDoses
- 13711 6.226962 0.287251 smallDoses
- 22240 10.169548 1.660104 largeDoses
- 15092 0.000000 1.370549 smallDoses
- 5017 7.513353 0.137348 smallDoses
- 10141 8.240793 0.099735 smallDoses
- 35570 14.612797 1.247390 largeDoses
- 46893 3.562976 0.445386 didntLike
- 8178 3.230482 1.331698 smallDoses
- 55783 3.612548 1.551911 didntLike
- 1148 0.000000 0.332365 smallDoses
- 10062 3.931299 0.487577 smallDoses
- 74124 14.752342 1.155160 didntLike
- 66603 10.261887 1.628085 didntLike
- 11893 2.787266 1.570402 smallDoses
- 50908 15.112319 1.324132 largeDoses
- 39891 5.184553 0.223382 largeDoses
- 65915 3.868359 0.128078 didntLike
- 65678 3.507965 0.028904 didntLike
- 62996 11.019254 0.427554 didntLike
- 36851 3.812387 0.655245 didntLike
- 36669 11.056784 0.378725 largeDoses
- 38876 8.826880 1.002328 largeDoses
- 26878 11.173861 1.478244 largeDoses
- 46246 11.506465 0.421993 largeDoses
- 12761 7.798138 0.147917 largeDoses
- 35282 10.155081 1.370039 largeDoses
- 68306 10.645275 0.693453 didntLike
- 31262 9.663200 1.521541 largeDoses
- 34754 10.790404 1.312679 largeDoses
- 13408 2.810534 0.219962 smallDoses
- 30365 9.825999 1.388500 largeDoses
- 10709 1.421316 0.677603 smallDoses
- 24332 11.123219 0.809107 largeDoses
- 45517 13.402206 0.661524 largeDoses
- 6178 1.212255 0.836807 smallDoses
- 10639 1.568446 1.297469 smallDoses
- 29613 3.343473 1.312266 didntLike
- 22392 5.400155 0.193494 didntLike
- 51126 3.818754 0.590905 didntLike
- 53644 7.973845 0.307364 largeDoses
- 51417 9.078824 0.734876 largeDoses
- 24859 0.153467 0.766619 didntLike
- 61732 8.325167 0.028479 didntLike
- 71128 7.092089 1.216733 didntLike
- 27276 5.192485 1.094409 largeDoses
- 30453 10.340791 1.087721 largeDoses
- 18670 2.077169 1.019775 smallDoses
- 70600 10.151966 0.993105 didntLike
- 12683 0.046826 0.809614 smallDoses
- 81597 11.221874 1.395015 didntLike
- 69959 14.497963 1.019254 didntLike
- 8124 3.554508 0.533462 smallDoses
- 18867 3.522673 0.086725 smallDoses
- 80886 14.531655 0.380172 didntLike
- 55895 3.027528 0.885457 didntLike
- 31587 1.845967 0.488985 didntLike
- 10591 10.226164 0.804403 largeDoses
- 70096 10.965926 1.212328 didntLike
- 53151 2.129921 1.477378 didntLike
- 11992 0.000000 1.606849 smallDoses
- 33114 9.489005 0.827814 largeDoses
- 7413 0.000000 1.020797 smallDoses
- 10583 0.000000 1.270167 smallDoses
- 58668 6.556676 0.055183 didntLike
- 35018 9.959588 0.060020 largeDoses
- 70843 7.436056 1.479856 didntLike
- 14011 0.404888 0.459517 smallDoses
- 35015 9.952942 1.650279 largeDoses
- 70839 15.600252 0.021935 didntLike
- 3024 2.723846 0.387455 smallDoses
- 5526 0.513866 1.323448 smallDoses
- 5113 0.000000 0.861859 smallDoses
- 20851 7.280602 1.438470 smallDoses
- 40999 9.161978 1.110180 largeDoses
- 15823 0.991725 0.730979 smallDoses
- 35432 7.398380 0.684218 largeDoses
- 53711 12.149747 1.389088 largeDoses
- 64371 9.149678 0.874905 didntLike
- 9289 9.666576 1.370330 smallDoses
- 60613 3.620110 0.287767 didntLike
- 18338 5.238800 1.253646 smallDoses
- 22845 14.715782 1.503758 largeDoses
- 74676 14.445740 1.211160 didntLike
- 34143 13.609528 0.364240 largeDoses
- 14153 3.141585 0.424280 smallDoses
- 9327 0.000000 0.120947 smallDoses
- 18991 0.454750 1.033280 smallDoses
- 9193 0.510310 0.016395 smallDoses
- 2285 3.864171 0.616349 smallDoses
- 9493 6.724021 0.563044 smallDoses
- 2371 4.289375 0.012563 smallDoses
- 13963 0.000000 1.437030 smallDoses
- 2299 3.733617 0.698269 smallDoses
- 5262 2.002589 1.380184 smallDoses
- 4659 2.502627 0.184223 smallDoses
- 17582 6.382129 0.876581 smallDoses
- 27750 8.546741 0.128706 largeDoses
- 9868 2.694977 0.432818 smallDoses
- 18333 3.951256 0.333300 smallDoses
- 3780 9.856183 0.329181 smallDoses
- 18190 2.068962 0.429927 smallDoses
- 11145 3.410627 0.631838 smallDoses
- 68846 9.974715 0.669787 didntLike
- 26575 10.650102 0.866627 largeDoses
- 48111 9.134528 0.728045 largeDoses
- 43757 7.882601 1.332446 largeDoses
1.2把文本文件初步处理,分类换成数字datingTestSet2.txt:
40920 8.326976 0.953952 3
14488 7.153469 1.673904 2
26052 1.441871 0.805124 1
75136 13.147394 0.428964 1
38344 1.669788 0.134296 1
72993 10.141740 1.032955 1
35948 6.830792 1.213192 3
42666 13.276369 0.543880 3
67497 8.631577 0.749278 1
35483 12.273169 1.508053 3
50242 3.723498 0.831917 1
63275 8.385879 1.669485 1
5569 4.875435 0.728658 2
51052 4.680098 0.625224 1
77372 15.299570 0.331351 1
43673 1.889461 0.191283 1
61364 7.516754 1.269164 1
69673 14.239195 0.261333 1
15669 0.000000 1.250185 2
28488 10.528555 1.304844 3
6487 3.540265 0.822483 2
37708 2.991551 0.833920 1
22620 5.297865 0.638306 2
28782 6.593803 0.187108 3
19739 2.816760 1.686209 2
36788 12.458258 0.649617 3
5741 0.000000 1.656418 2
28567 9.968648 0.731232 3
6808 1.364838 0.640103 2
41611 0.230453 1.151996 1
36661 11.865402 0.882810 3
43605 0.120460 1.352013 1
15360 8.545204 1.340429 3
63796 5.856649 0.160006 1
10743 9.665618 0.778626 2
70808 9.778763 1.084103 1
72011 4.932976 0.632026 1
5914 2.216246 0.587095 2
14851 14.305636 0.632317 3
33553 12.591889 0.686581 3
44952 3.424649 1.004504 1
17934 0.000000 0.147573 2
27738 8.533823 0.205324 3
29290 9.829528 0.238620 3
42330 11.492186 0.263499 3
36429 3.570968 0.832254 1
39623 1.771228 0.207612 1
32404 3.513921 0.991854 1
27268 4.398172 0.975024 1
5477 4.276823 1.174874 2
14254 5.946014 1.614244 2
68613 13.798970 0.724375 1
41539 10.393591 1.663724 3
7917 3.007577 0.297302 2
21331 1.031938 0.486174 2
8338 4.751212 0.064693 2
5176 3.692269 1.655113 2
18983 10.448091 0.267652 3
68837 10.585786 0.329557 1
13438 1.604501 0.069064 2
48849 3.679497 0.961466 1
12285 3.795146 0.696694 2
7826 2.531885 1.659173 2
5565 9.733340 0.977746 2
10346 6.093067 1.413798 2
1823 7.712960 1.054927 2
9744 11.470364 0.760461 3
16857 2.886529 0.934416 2
39336 10.054373 1.138351 3
65230 9.972470 0.881876 1
2463 2.335785 1.366145 2
27353 11.375155 1.528626 3
16191 0.000000 0.605619 2
12258 4.126787 0.357501 2
42377 6.319522 1.058602 1
25607 8.680527 0.086955 3
77450 14.856391 1.129823 1
58732 2.454285 0.222380 1
46426 7.292202 0.548607 3
32688 8.745137 0.857348 3
64890 8.579001 0.683048 1
8554 2.507302 0.869177 2
28861 11.415476 1.505466 3
42050 4.838540 1.680892 1
32193 10.339507 0.583646 3
64895 6.573742 1.151433 1
2355 6.539397 0.462065 2
0 2.209159 0.723567 2
70406 11.196378 0.836326 1
57399 4.229595 0.128253 1
41732 9.505944 0.005273 3
11429 8.652725 1.348934 3
75270 17.101108 0.490712 1
5459 7.871839 0.717662 2
73520 8.262131 1.361646 1
40279 9.015635 1.658555 3
21540 9.215351 0.806762 3
17694 6.375007 0.033678 2
22329 2.262014 1.022169 1
46570 5.677110 0.709469 1
42403 11.293017 0.207976 3
33654 6.590043 1.353117 1
9171 4.711960 0.194167 2
28122 8.768099 1.108041 3
34095 11.502519 0.545097 3
1774 4.682812 0.578112 2
40131 12.446578 0.300754 3
13994 12.908384 1.657722 3
77064 12.601108 0.974527 1
11210 3.929456 0.025466 2
6122 9.751503 1.182050 3
15341 3.043767 0.888168 2
44373 4.391522 0.807100 1
28454 11.695276 0.679015 3
63771 7.879742 0.154263 1
9217 5.613163 0.933632 2
69076 9.140172 0.851300 1
24489 4.258644 0.206892 1
16871 6.799831 1.221171 2
39776 8.752758 0.484418 3
5901 1.123033 1.180352 2
40987 10.833248 1.585426 3
7479 3.051618 0.026781 2
38768 5.308409 0.030683 3
4933 1.841792 0.028099 2
32311 2.261978 1.605603 1
26501 11.573696 1.061347 3
37433 8.038764 1.083910 3
23503 10.734007 0.103715 3
68607 9.661909 0.350772 1
27742 9.005850 0.548737 3
11303 0.000000 0.539131 2
0 5.757140 1.062373 2
32729 9.164656 1.624565 3
24619 1.318340 1.436243 1
42414 14.075597 0.695934 3
20210 10.107550 1.308398 3
33225 7.960293 1.219760 3
54483 6.317292 0.018209 1
18475 12.664194 0.595653 3
33926 2.906644 0.581657 1
43865 2.388241 0.913938 1
26547 6.024471 0.486215 3
44404 7.226764 1.255329 3
16674 4.183997 1.275290 2
8123 11.850211 1.096981 3
42747 11.661797 1.167935 3
56054 3.574967 0.494666 1
10933 0.000000 0.107475 2
18121 7.937657 0.904799 3
11272 3.365027 1.014085 2
16297 0.000000 0.367491 2
28168 13.860672 1.293270 3
40963 10.306714 1.211594 3
31685 7.228002 0.670670 3
55164 4.508740 1.036192 1
17595 0.366328 0.163652 2
1862 3.299444 0.575152 2
57087 0.573287 0.607915 1
63082 9.183738 0.012280 1
51213 7.842646 1.060636 3
6487 4.750964 0.558240 2
4805 11.438702 1.556334 3
30302 8.243063 1.122768 3
68680 7.949017 0.271865 1
17591 7.875477 0.227085 2
74391 9.569087 0.364856 1
37217 7.750103 0.869094 3
42814 0.000000 1.515293 1
14738 3.396030 0.633977 2
19896 11.916091 0.025294 3
14673 0.460758 0.689586 2
32011 13.087566 0.476002 3
58736 4.589016 1.672600 1
54744 8.397217 1.534103 1
29482 5.562772 1.689388 1
27698 10.905159 0.619091 3
11443 1.311441 1.169887 2
56117 10.647170 0.980141 3
39514 0.000000 0.481918 1
26627 8.503025 0.830861 3
16525 0.436880 1.395314 2
24368 6.127867 1.102179 1
22160 12.112492 0.359680 3
6030 1.264968 1.141582 2
6468 6.067568 1.327047 2
22945 8.010964 1.681648 3
18520 3.791084 0.304072 2
34914 11.773195 1.262621 3
6121 8.339588 1.443357 2
38063 2.563092 1.464013 1
23410 5.954216 0.953782 1
35073 9.288374 0.767318 3
52914 3.976796 1.043109 1
16801 8.585227 1.455708 3
9533 1.271946 0.796506 2
16721 0.000000 0.242778 2
5832 0.000000 0.089749 2
44591 11.521298 0.300860 3
10143 1.139447 0.415373 2
21609 5.699090 1.391892 2
23817 2.449378 1.322560 1
15640 0.000000 1.228380 2
8847 3.168365 0.053993 2
50939 10.428610 1.126257 3
28521 2.943070 1.446816 1
32901 10.441348 0.975283 3
42850 12.478764 1.628726 3
13499 5.856902 0.363883 2
40345 2.476420 0.096075 1
43547 1.826637 0.811457 1
70758 4.324451 0.328235 1
19780 1.376085 1.178359 2
44484 5.342462 0.394527 1
54462 11.835521 0.693301 3
20085 12.423687 1.424264 3
42291 12.161273 0.071131 3
47550 8.148360 1.649194 3
11938 1.531067 1.549756 2
40699 3.200912 0.309679 1
70908 8.862691 0.530506 1
73989 6.370551 0.369350 1
11872 2.468841 0.145060 2
48463 11.054212 0.141508 3
15987 2.037080 0.715243 2
70036 13.364030 0.549972 1
32967 10.249135 0.192735 3
63249 10.464252 1.669767 1
42795 9.424574 0.013725 3
14459 4.458902 0.268444 2
19973 0.000000 0.575976 2
5494 9.686082 1.029808 3
67902 13.649402 1.052618 1
25621 13.181148 0.273014 3
27545 3.877472 0.401600 1
58656 1.413952 0.451380 1
7327 4.248986 1.430249 2
64555 8.779183 0.845947 1
8998 4.156252 0.097109 2
11752 5.580018 0.158401 2
76319 15.040440 1.366898 1
27665 12.793870 1.307323 3
67417 3.254877 0.669546 1
21808 10.725607 0.588588 3
15326 8.256473 0.765891 2
20057 8.033892 1.618562 3
79341 10.702532 0.204792 1
15636 5.062996 1.132555 2
35602 10.772286 0.668721 3
28544 1.892354 0.837028 1
57663 1.019966 0.372320 1
78727 15.546043 0.729742 1
68255 11.638205 0.409125 1
14964 3.427886 0.975616 2
21835 11.246174 1.475586 3
7487 0.000000 0.645045 2
8700 0.000000 1.424017 2
26226 8.242553 0.279069 3
65899 8.700060 0.101807 1
6543 0.812344 0.260334 2
46556 2.448235 1.176829 1
71038 13.230078 0.616147 1
47657 0.236133 0.340840 1
19600 11.155826 0.335131 3
37422 11.029636 0.505769 3
1363 2.901181 1.646633 2
26535 3.924594 1.143120 1
47707 2.524806 1.292848 1
38055 3.527474 1.449158 1
6286 3.384281 0.889268 2
10747 0.000000 1.107592 2
44883 11.898890 0.406441 3
56823 3.529892 1.375844 1
68086 11.442677 0.696919 1
70242 10.308145 0.422722 1
11409 8.540529 0.727373 2
67671 7.156949 1.691682 1
61238 0.720675 0.847574 1
17774 0.229405 1.038603 2
53376 3.399331 0.077501 1
30930 6.157239 0.580133 1
28987 1.239698 0.719989 1
13655 6.036854 0.016548 2
7227 5.258665 0.933722 2
40409 12.393001 1.571281 3
13605 9.627613 0.935842 2
26400 11.130453 0.597610 3
13491 8.842595 0.349768 3
30232 10.690010 1.456595 3
43253 5.714718 1.674780 3
55536 3.052505 1.335804 1
8807 0.000000 0.059025 2
25783 9.945307 1.287952 3
22812 2.719723 1.142148 1
77826 11.154055 1.608486 1
38172 2.687918 0.660836 1
31676 10.037847 0.962245 3
74038 12.404762 1.112080 1
44738 10.237305 0.633422 3
17410 4.745392 0.662520 2
5688 4.639461 1.569431 2
36642 3.149310 0.639669 1
29956 13.406875 1.639194 3
60350 6.068668 0.881241 1
23758 9.477022 0.899002 3
25780 3.897620 0.560201 2
11342 5.463615 1.203677 2
36109 3.369267 1.575043 1
14292 5.234562 0.825954 2
11160 0.000000 0.722170 2
23762 12.979069 0.504068 3
39567 5.376564 0.557476 1
25647 13.527910 1.586732 3
14814 2.196889 0.784587 2
73590 10.691748 0.007509 1
35187 1.659242 0.447066 1
49459 8.369667 0.656697 3
31657 13.157197 0.143248 3
6259 8.199667 0.908508 2
33101 4.441669 0.439381 3
27107 9.846492 0.644523 3
17824 0.019540 0.977949 2
43536 8.253774 0.748700 3
67705 6.038620 1.509646 1
35283 6.091587 1.694641 3
71308 8.986820 1.225165 1
31054 11.508473 1.624296 3
52387 8.807734 0.713922 3
40328 0.000000 0.816676 1
34844 8.889202 1.665414 3
11607 3.178117 0.542752 2
64306 7.013795 0.139909 1
32721 9.605014 0.065254 3
33170 1.230540 1.331674 1
37192 10.412811 0.890803 3
13089 0.000000 0.567161 2
66491 9.699991 0.122011 1
15941 0.000000 0.061191 2
4272 4.455293 0.272135 2
48812 3.020977 1.502803 1
28818 8.099278 0.216317 3
35394 1.157764 1.603217 1
71791 10.105396 0.121067 1
40668 11.230148 0.408603 3
39580 9.070058 0.011379 3
11786 0.566460 0.478837 2
19251 0.000000 0.487300 2
56594 8.956369 1.193484 3
54495 1.523057 0.620528 1
11844 2.749006 0.169855 2
45465 9.235393 0.188350 3
31033 10.555573 0.403927 3
16633 6.956372 1.519308 2
13887 0.636281 1.273984 2
52603 3.574737 0.075163 1
72000 9.032486 1.461809 1
68497 5.958993 0.023012 1
35135 2.435300 1.211744 1
26397 10.539731 1.638248 3
7313 7.646702 0.056513 2
91273 20.919349 0.644571 1
24743 1.424726 0.838447 1
31690 6.748663 0.890223 3
15432 2.289167 0.114881 2
58394 5.548377 0.402238 1
33962 6.057227 0.432666 1
31442 10.828595 0.559955 3
31044 11.318160 0.271094 3
29938 13.265311 0.633903 3
9875 0.000000 1.496715 2
51542 6.517133 0.402519 3
11878 4.934374 1.520028 2
69241 10.151738 0.896433 1
37776 2.425781 1.559467 1
68997 9.778962 1.195498 1
67416 12.219950 0.657677 1
59225 7.394151 0.954434 1
29138 8.518535 0.742546 3
5962 2.798700 0.662632 2
10847 0.637930 0.617373 2
70527 10.750490 0.097415 1
9610 0.625382 0.140969 2
64734 10.027968 0.282787 1
25941 9.817347 0.364197 3
2763 0.646828 1.266069 2
55601 3.347111 0.914294 1
31128 11.816892 0.193798 3
5181 0.000000 1.480198 2
69982 10.945666 0.993219 1
52440 10.244706 0.280539 3
57350 2.579801 1.149172 1
57869 2.630410 0.098869 1
56557 11.746200 1.695517 3
42342 8.104232 1.326277 3
15560 12.409743 0.790295 3
34826 12.167844 1.328086 3
8569 3.198408 0.299287 2
77623 16.055513 0.541052 1
78184 7.138659 0.158481 1
7036 4.831041 0.761419 2
69616 10.082890 1.373611 1
21546 10.066867 0.788470 3
36715 8.129538 0.329913 3
20522 3.012463 1.138108 2
42349 3.720391 0.845974 1
9037 0.773493 1.148256 2
26728 10.962941 1.037324 3
587 0.177621 0.162614 2
48915 3.085853 0.967899 1
9824 8.426781 0.202558 2
4135 1.825927 1.128347 2
9666 2.185155 1.010173 2
59333 7.184595 1.261338 1
36198 0.000000 0.116525 1
34909 8.901752 1.033527 3
47516 2.451497 1.358795 1
55807 3.213631 0.432044 1
14036 3.974739 0.723929 2
42856 9.601306 0.619232 3
64007 8.363897 0.445341 1
59428 6.381484 1.365019 1
13730 0.000000 1.403914 2
41740 9.609836 1.438105 3
63546 9.904741 0.985862 1
30417 7.185807 1.489102 3
69636 5.466703 1.216571 1
64660 0.000000 0.915898 1
14883 4.575443 0.535671 2
7965 3.277076 1.010868 2
68620 10.246623 1.239634 1
8738 2.341735 1.060235 2
7544 3.201046 0.498843 2
6377 6.066013 0.120927 2
36842 8.829379 0.895657 3
81046 15.833048 1.568245 1
67736 13.516711 1.220153 1
32492 0.664284 1.116755 1
39299 6.325139 0.605109 3
77289 8.677499 0.344373 1
33835 8.188005 0.964896 3
71890 9.414263 0.384030 1
32054 9.196547 1.138253 3
38579 10.202968 0.452363 3
55984 2.119439 1.481661 1
72694 13.635078 0.858314 1
42299 0.083443 0.701669 1
26635 9.149096 1.051446 3
8579 1.933803 1.374388 2
37302 14.115544 0.676198 3
22878 8.933736 0.943352 3
4364 2.661254 0.946117 2
4985 0.988432 1.305027 2
37068 2.063741 1.125946 1
41137 2.220590 0.690754 1
67759 6.424849 0.806641 1
11831 1.156153 1.613674 2
34502 3.032720 0.601847 1
4088 3.076828 0.952089 2
15199 0.000000 0.318105 2
17309 7.750480 0.554015 3
42816 10.958135 1.482500 3
43751 10.222018 0.488678 3
58335 2.367988 0.435741 1
75039 7.686054 1.381455 1
42878 11.464879 1.481589 3
42770 11.075735 0.089726 3
8848 3.543989 0.345853 2
31340 8.123889 1.282880 3
41413 4.331769 0.754467 3
12731 0.120865 1.211961 2
22447 6.116109 0.701523 3
33564 7.474534 0.505790 3
48907 8.819454 0.649292 3
8762 6.802144 0.615284 2
46696 12.666325 0.931960 3
36851 8.636180 0.399333 3
67639 11.730991 1.289833 1
171 8.132449 0.039062 2
26674 10.296589 1.496144 3
8739 7.583906 1.005764 2
66668 9.777806 0.496377 1
68732 8.833546 0.513876 1
69995 4.907899 1.518036 1
82008 8.362736 1.285939 1
25054 9.084726 1.606312 3
33085 14.164141 0.560970 3
41379 9.080683 0.989920 3
39417 6.522767 0.038548 3
12556 3.690342 0.462281 2
39432 3.563706 0.242019 1
38010 1.065870 1.141569 1
69306 6.683796 1.456317 1
38000 1.712874 0.243945 1
46321 13.109929 1.280111 3
66293 11.327910 0.780977 1
22730 4.545711 1.233254 1
5952 3.367889 0.468104 2
72308 8.326224 0.567347 1
60338 8.978339 1.442034 1
13301 5.655826 1.582159 2
27884 8.855312 0.570684 3
11188 6.649568 0.544233 2
56796 3.966325 0.850410 1
8571 1.924045 1.664782 2
4914 6.004812 0.280369 2
10784 0.000000 0.375849 2
39296 9.923018 0.092192 3
13113 2.389084 0.119284 2
70204 13.663189 0.133251 1
46813 11.434976 0.321216 3
11697 0.358270 1.292858 2
44183 9.598873 0.223524 3
2225 6.375275 0.608040 2
29066 11.580532 0.458401 3
4245 5.319324 1.598070 2
34379 4.324031 1.603481 1
44441 2.358370 1.273204 1
2022 0.000000 1.182708 2
26866 12.824376 0.890411 3
57070 1.587247 1.456982 1
32932 8.510324 1.520683 3
51967 10.428884 1.187734 3
44432 8.346618 0.042318 3
67066 7.541444 0.809226 1
17262 2.540946 1.583286 2
79728 9.473047 0.692513 1
14259 0.352284 0.474080 2
6122 0.000000 0.589826 2
76879 12.405171 0.567201 1
11426 4.126775 0.871452 2
2493 0.034087 0.335848 2
19910 1.177634 0.075106 2
10939 0.000000 0.479996 2
17716 0.994909 0.611135 2
31390 11.053664 1.180117 3
20375 0.000000 1.679729 2
26309 2.495011 1.459589 1
33484 11.516831 0.001156 3
45944 9.213215 0.797743 3
4249 5.332865 0.109288 2
6089 0.000000 1.689771 2
7513 0.000000 1.126053 2
27862 12.640062 1.690903 3
39038 2.693142 1.317518 1
19218 3.328969 0.268271 2
62911 7.193166 1.117456 1
77758 6.615512 1.521012 1
27940 8.000567 0.835341 3
2194 4.017541 0.512104 2
37072 13.245859 0.927465 3
15585 5.970616 0.813624 2
25577 11.668719 0.886902 3
8777 4.283237 1.272728 2
29016 10.742963 0.971401 3
21910 12.326672 1.592608 3
12916 0.000000 0.344622 2
10976 0.000000 0.922846 2
79065 10.602095 0.573686 1
36759 10.861859 1.155054 3
50011 1.229094 1.638690 1
1155 0.410392 1.313401 2
71600 14.552711 0.616162 1
30817 14.178043 0.616313 3
54559 14.136260 0.362388 1
29764 0.093534 1.207194 1
69100 10.929021 0.403110 1
47324 11.432919 0.825959 3
73199 9.134527 0.586846 1
44461 5.071432 1.421420 1
45617 11.460254 1.541749 3
28221 11.620039 1.103553 3
7091 4.022079 0.207307 2
6110 3.057842 1.631262 2
79016 7.782169 0.404385 1
18289 7.981741 0.929789 3
43679 4.601363 0.268326 1
22075 2.595564 1.115375 1
23535 10.049077 0.391045 3
25301 3.265444 1.572970 2
32256 11.780282 1.511014 3
36951 3.075975 0.286284 1
31290 1.795307 0.194343 1
38953 11.106979 0.202415 3
35257 5.994413 0.800021 1
25847 9.706062 1.012182 3
32680 10.582992 0.836025 3
62018 7.038266 1.458979 1
9074 0.023771 0.015314 2
33004 12.823982 0.676371 3
44588 3.617770 0.493483 1
32565 8.346684 0.253317 3
38563 6.104317 0.099207 1
75668 16.207776 0.584973 1
9069 6.401969 1.691873 2
53395 2.298696 0.559757 1
28631 7.661515 0.055981 3
71036 6.353608 1.645301 1
71142 10.442780 0.335870 1
37653 3.834509 1.346121 1
76839 10.998587 0.584555 1
9916 2.695935 1.512111 2
38889 3.356646 0.324230 1
39075 14.677836 0.793183 3
48071 1.551934 0.130902 1
7275 2.464739 0.223502 2
41804 1.533216 1.007481 1
35665 12.473921 0.162910 3
67956 6.491596 0.032576 1
41892 10.506276 1.510747 3
38844 4.380388 0.748506 1
74197 13.670988 1.687944 1
14201 8.317599 0.390409 2
3908 0.000000 0.556245 2
2459 0.000000 0.290218 2
32027 10.095799 1.188148 3
12870 0.860695 1.482632 2
9880 1.557564 0.711278 2
72784 10.072779 0.756030 1
17521 0.000000 0.431468 2
50283 7.140817 0.883813 3
33536 11.384548 1.438307 3
9452 3.214568 1.083536 2
37457 11.720655 0.301636 3
17724 6.374475 1.475925 3
43869 5.749684 0.198875 3
264 3.871808 0.552602 2
25736 8.336309 0.636238 3
39584 9.710442 1.503735 3
31246 1.532611 1.433898 1
49567 9.785785 0.984614 3
7052 2.633627 1.097866 2
35493 9.238935 0.494701 3
10986 1.205656 1.398803 2
49508 3.124909 1.670121 1
5734 7.935489 1.585044 2
65479 12.746636 1.560352 1
77268 10.732563 0.545321 1
28490 3.977403 0.766103 1
13546 4.194426 0.450663 2
37166 9.610286 0.142912 3
16381 4.797555 1.260455 2
10848 1.615279 0.093002 2
35405 4.614771 1.027105 1
15917 0.000000 1.369726 2
6131 0.608457 0.512220 2
67432 6.558239 0.667579 1
30354 12.315116 0.197068 3
69696 7.014973 1.494616 1
33481 8.822304 1.194177 3
43075 10.086796 0.570455 3
38343 7.241614 1.661627 3
14318 4.602395 1.511768 2
5367 7.434921 0.079792 2
37894 10.467570 1.595418 3
36172 9.948127 0.003663 3
40123 2.478529 1.568987 1
10976 5.938545 0.878540 2
12705 0.000000 0.948004 2
12495 5.559181 1.357926 2
35681 9.776654 0.535966 3
46202 3.092056 0.490906 1
11505 0.000000 1.623311 2
22834 4.459495 0.538867 1
49901 8.334306 1.646600 3
71932 11.226654 0.384686 1
13279 3.904737 1.597294 2
49112 7.038205 1.211329 3
77129 9.836120 1.054340 1
37447 1.990976 0.378081 1
62397 9.005302 0.485385 1
0 1.772510 1.039873 2
15476 0.458674 0.819560 2
40625 10.003919 0.231658 3
36706 0.520807 1.476008 1
28580 10.678214 1.431837 3
25862 4.425992 1.363842 1
63488 12.035355 0.831222 1
33944 10.606732 1.253858 3
30099 1.568653 0.684264 1
13725 2.545434 0.024271 2
36768 10.264062 0.982593 3
64656 9.866276 0.685218 1
14927 0.142704 0.057455 2
43231 9.853270 1.521432 3
66087 6.596604 1.653574 1
19806 2.602287 1.321481 2
41081 10.411776 0.664168 3
10277 7.083449 0.622589 2
7014 2.080068 1.254441 2
17275 0.522844 1.622458 2
31600 10.362000 1.544827 3
59956 3.412967 1.035410 1
42181 6.796548 1.112153 3
51743 4.092035 0.075804 1
5194 2.763811 1.564325 2
30832 12.547439 1.402443 3
7976 5.708052 1.596152 2
14602 4.558025 0.375806 2
41571 11.642307 0.438553 3
55028 3.222443 0.121399 1
5837 4.736156 0.029871 2
39808 10.839526 0.836323 3
20944 4.194791 0.235483 2
22146 14.936259 0.888582 3
42169 3.310699 1.521855 1
7010 2.971931 0.034321 2
3807 9.261667 0.537807 2
29241 7.791833 1.111416 3
52696 1.480470 1.028750 1
42545 3.677287 0.244167 1
24437 2.202967 1.370399 1
16037 5.796735 0.935893 2
8493 3.063333 0.144089 2
68080 11.233094 0.492487 1
59016 1.965570 0.005697 1
11810 8.616719 0.137419 2
68630 6.609989 1.083505 1
7629 1.712639 1.086297 2
71992 10.117445 1.299319 1
13398 0.000000 1.104178 2
26241 9.824777 1.346821 3
11160 1.653089 0.980949 2
76701 18.178822 1.473671 1
32174 6.781126 0.885340 3
45043 8.206750 1.549223 3
42173 10.081853 1.376745 3
69801 6.288742 0.112799 1
41737 3.695937 1.543589 1
46979 6.726151 1.069380 3
79267 12.969999 1.568223 1
4615 2.661390 1.531933 2
32907 7.072764 1.117386 3
37444 9.123366 1.318988 3
569 3.743946 1.039546 2
8723 2.341300 0.219361 2
6024 0.541913 0.592348 2
52252 2.310828 1.436753 1
8358 6.226597 1.427316 2
26166 7.277876 0.489252 3
18471 0.000000 0.389459 2
3386 7.218221 1.098828 2
41544 8.777129 1.111464 3
10480 2.813428 0.819419 2
5894 2.268766 1.412130 2
7273 6.283627 0.571292 2
22272 7.520081 1.626868 3
31369 11.739225 0.027138 3
10708 3.746883 0.877350 2
69364 12.089835 0.521631 1
37760 12.310404 0.259339 3
13004 0.000000 0.671355 2
37885 2.728800 0.331502 1
52555 10.814342 0.607652 3
38997 12.170268 0.844205 3
69698 6.698371 0.240084 1
11783 3.632672 1.643479 2
47636 10.059991 0.892361 3
15744 1.887674 0.756162 2
69058 8.229125 0.195886 1
33057 7.817082 0.476102 3
28681 12.277230 0.076805 3
34042 10.055337 1.115778 3
29928 3.596002 1.485952 1
9734 2.755530 1.420655 2
7344 7.780991 0.513048 2
7387 0.093705 0.391834 2
33957 8.481567 0.520078 3
9936 3.865584 0.110062 2
36094 9.683709 0.779984 3
39835 10.617255 1.359970 3
64486 7.203216 1.624762 1
0 7.601414 1.215605 2
39539 1.386107 1.417070 1
66972 9.129253 0.594089 1
15029 1.363447 0.620841 2
44909 3.181399 0.359329 1
38183 13.365414 0.217011 3
37372 4.207717 1.289767 1
0 4.088395 0.870075 2
17786 3.327371 1.142505 2
39055 1.303323 1.235650 1
37045 7.999279 1.581763 3
6435 2.217488 0.864536 2
72265 7.751808 0.192451 1
28152 14.149305 1.591532 3
25931 8.765721 0.152808 3
7538 3.408996 0.184896 2
1315 1.251021 0.112340 2
12292 6.160619 1.537165 2
49248 1.034538 1.585162 1
9025 0.000000 1.034635 2
13438 2.355051 0.542603 2
69683 6.614543 0.153771 1
25374 10.245062 1.450903 3
55264 3.467074 1.231019 1
38324 7.487678 1.572293 3
69643 4.624115 1.185192 1
44058 8.995957 1.436479 3
41316 11.564476 0.007195 3
29119 3.440948 0.078331 1
51656 1.673603 0.732746 1
3030 4.719341 0.699755 2
35695 10.304798 1.576488 3
1537 2.086915 1.199312 2
9083 6.338220 1.131305 2
47744 8.254926 0.710694 3
71372 16.067108 0.974142 1
37980 1.723201 0.310488 1
42385 3.785045 0.876904 1
22687 2.557561 0.123738 1
39512 9.852220 1.095171 3
11885 3.679147 1.557205 2
4944 9.789681 0.852971 2
73230 14.958998 0.526707 1
17585 11.182148 1.288459 3
68737 7.528533 1.657487 1
13818 5.253802 1.378603 2
31662 13.946752 1.426657 3
86686 15.557263 1.430029 1
43214 12.483550 0.688513 3
24091 2.317302 1.411137 1
52544 10.069724 0.766119 3
61861 5.792231 1.615483 1
47903 4.138435 0.475994 1
37190 12.929517 0.304378 3
6013 9.378238 0.307392 2
27223 8.361362 1.643204 3
69027 7.939406 1.325042 1
78642 10.735384 0.705788 1
30254 11.592723 0.286188 3
21704 10.098356 0.704748 3
34985 9.299025 0.545337 3
31316 11.158297 0.218067 3
76368 16.143900 0.558388 1
27953 10.971700 1.221787 3
152 0.000000 0.681478 2
9146 3.178961 1.292692 2
75346 17.625350 0.339926 1
26376 1.995833 0.267826 1
35255 10.640467 0.416181 3
19198 9.628339 0.985462 3
12518 4.662664 0.495403 2
25453 5.754047 1.382742 2
12530 0.000000 0.037146 2
62230 9.334332 0.198118 1
9517 3.846162 0.619968 2
71161 10.685084 0.678179 1
1593 4.752134 0.359205 2
33794 0.697630 0.966786 1
39710 10.365836 0.505898 3
16941 0.461478 0.352865 2
69209 11.339537 1.068740 1
4446 5.420280 0.127310 2
9347 3.469955 1.619947 2
55635 8.517067 0.994858 3
65889 8.306512 0.413690 1
10753 2.628690 0.444320 2
7055 0.000000 0.802985 2
7905 0.000000 1.170397 2
53447 7.298767 1.582346 3
9194 7.331319 1.277988 2
61914 9.392269 0.151617 1
15630 5.541201 1.180596 2
79194 15.149460 0.537540 1
12268 5.515189 0.250562 2
33682 7.728898 0.920494 3
26080 11.318785 1.510979 3
19119 3.574709 1.531514 2
30902 7.350965 0.026332 3
63039 7.122363 1.630177 1
51136 1.828412 1.013702 1
35262 10.117989 1.156862 3
42776 11.309897 0.086291 3
64191 8.342034 1.388569 1
15436 0.241714 0.715577 2
14402 10.482619 1.694972 2
6341 9.289510 1.428879 2
14113 4.269419 0.134181 2
6390 0.000000 0.189456 2
8794 0.817119 0.143668 2
43432 1.508394 0.652651 1
38334 9.359918 0.052262 3
34068 10.052333 0.550423 3
30819 11.111660 0.989159 3
22239 11.265971 0.724054 3
28725 10.383830 0.254836 3
57071 3.878569 1.377983 1
72420 13.679237 0.025346 1
28294 10.526846 0.781569 3
9896 0.000000 0.924198 2
65821 4.106727 1.085669 1
7645 8.118856 1.470686 2
71289 7.796874 0.052336 1
5128 2.789669 1.093070 2
13711 6.226962 0.287251 2
22240 10.169548 1.660104 3
15092 0.000000 1.370549 2
5017 7.513353 0.137348 2
10141 8.240793 0.099735 2
35570 14.612797 1.247390 3
46893 3.562976 0.445386 1
8178 3.230482 1.331698 2
55783 3.612548 1.551911 1
1148 0.000000 0.332365 2
10062 3.931299 0.487577 2
74124 14.752342 1.155160 1
66603 10.261887 1.628085 1
11893 2.787266 1.570402 2
50908 15.112319 1.324132 3
39891 5.184553 0.223382 3
65915 3.868359 0.128078 1
65678 3.507965 0.028904 1
62996 11.019254 0.427554 1
36851 3.812387 0.655245 1
36669 11.056784 0.378725 3
38876 8.826880 1.002328 3
26878 11.173861 1.478244 3
46246 11.506465 0.421993 3
12761 7.798138 0.147917 3
35282 10.155081 1.370039 3
68306 10.645275 0.693453 1
31262 9.663200 1.521541 3
34754 10.790404 1.312679 3
13408 2.810534 0.219962 2
30365 9.825999 1.388500 3
10709 1.421316 0.677603 2
24332 11.123219 0.809107 3
45517 13.402206 0.661524 3
6178 1.212255 0.836807 2
10639 1.568446 1.297469 2
29613 3.343473 1.312266 1
22392 5.400155 0.193494 1
51126 3.818754 0.590905 1
53644 7.973845 0.307364 3
51417 9.078824 0.734876 3
24859 0.153467 0.766619 1
61732 8.325167 0.028479 1
71128 7.092089 1.216733 1
27276 5.192485 1.094409 3
30453 10.340791 1.087721 3
18670 2.077169 1.019775 2
70600 10.151966 0.993105 1
12683 0.046826 0.809614 2
81597 11.221874 1.395015 1
69959 14.497963 1.019254 1
8124 3.554508 0.533462 2
18867 3.522673 0.086725 2
80886 14.531655 0.380172 1
55895 3.027528 0.885457 1
31587 1.845967 0.488985 1
10591 10.226164 0.804403 3
70096 10.965926 1.212328 1
53151 2.129921 1.477378 1
11992 0.000000 1.606849 2
33114 9.489005 0.827814 3
7413 0.000000 1.020797 2
10583 0.000000 1.270167 2
58668 6.556676 0.055183 1
35018 9.959588 0.060020 3
70843 7.436056 1.479856 1
14011 0.404888 0.459517 2
35015 9.952942 1.650279 3
70839 15.600252 0.021935 1
3024 2.723846 0.387455 2
5526 0.513866 1.323448 2
5113 0.000000 0.861859 2
20851 7.280602 1.438470 2
40999 9.161978 1.110180 3
15823 0.991725 0.730979 2
35432 7.398380 0.684218 3
53711 12.149747 1.389088 3
64371 9.149678 0.874905 1
9289 9.666576 1.370330 2
60613 3.620110 0.287767 1
18338 5.238800 1.253646 2
22845 14.715782 1.503758 3
74676 14.445740 1.211160 1
34143 13.609528 0.364240 3
14153 3.141585 0.424280 2
9327 0.000000 0.120947 2
18991 0.454750 1.033280 2
9193 0.510310 0.016395 2
2285 3.864171 0.616349 2
9493 6.724021 0.563044 2
2371 4.289375 0.012563 2
13963 0.000000 1.437030 2
2299 3.733617 0.698269 2
5262 2.002589 1.380184 2
4659 2.502627 0.184223 2
17582 6.382129 0.876581 2
27750 8.546741 0.128706 3
9868 2.694977 0.432818 2
18333 3.951256 0.333300 2
3780 9.856183 0.329181 2
18190 2.068962 0.429927 2
11145 3.410627 0.631838 2
68846 9.974715 0.669787 1
26575 10.650102 0.866627 3
48111 9.134528 0.728045 3
43757 7.882601 1.332446 3
第2步.准备数据:使用Python解析文本文件,文件名kNN.py
from numpy import * #导入科学计算包
import operator #运算符模块,k近邻算法执行排序操作时将使用这个模块提供的函数 #文件转矩阵函数开始
def file2matrix(filename):
fr=open(filename) #读取文档
arraylines=fr.readlines() #读取每行,结果为列表格式
lengthlines=len(arraylines) #获取列表长度,相当于文档行数
mats=zeros((lengthlines,3)) #创建一个以0填充的矩阵:(lengthlines行,3列)
classLabelVector = [] #创建分类标签列表
i=0 for line in arraylines: #处理列表
line=line.strip() #去除每行列表两边空格、回车等
listFromLine=line.split('\t') #用Tab键 分割列表为:[40920\t8.326976\t0.953952\tlargeDoses](\t千万别写错/t,否则报错:“could not convert string to float:”)
mats[i,:]=listFromLine[0:3] #把列表前3个数字填入mats的矩阵:[40920\t8.326976\t0.953952]
classLabelVector.append(int(listFromLine[-1])) #把列表最后一项添加入classLabelVector列表,顺序为先进排在前面,后进排后面(如果用文件datingTestSet.txt,则原int(listFromLine[-1])去除int,否则报错)
i+=1
return mats,classLabelVector #返回训练矩阵,和对应的分类标签
运行:可以再最下面加入:
if __name__=='__main__':
#groups,labels=createDataSet()
#print(classify0([1,0], groups, labels, 2)) a,b=file2matrix('datingTestSet2.txt')
print(a)
print(b)
运行2:或在命令窗输入:import kNN
>>> import kNN
>>> reload(kNN) #kNN有变化时,重加载
>>> datingDataMat, datingLabels = kNN.file2matrix('datingTestSet2.txt')
第3步. 分析数据:使用Matplotlib画二维扩散图
3.1 在KNN.py,和datingTestSet.txt 文件夹内,运行命令窗口:
>>> import kNN
>>> datingDataMat, datingLabels = kNN.file2matrix('datingTestSet.txt')
>>> import matplotlib
>>> import matplotlib.pyplot as plt
>>> fig = plt.figure()
>>> ax = fig.add_subplot(111)
>>> ax.scatter(datingDataMat[:,1], datingDataMat[:,2])
>>> plt.show()
得到下图:(x:玩视频游戏所耗时间百分比,y:每周所消费的冰淇淋公升数)
3.2 由于没有使用样本分类的特征值,我们很难从图2-3中看到任何有用的数据模式信息。一般来说,我们会采用色彩或其他的记号来标记不同样本分类,以便更好地理解数据信息。
在文件夹下新建一个名为test.py的文件,输入如下代码:
import knn,matplotlib
import matplotlib.pyplot as plt
from numpy import array datingDataMat, datingLabels = knn.file2matrix('datingTestSet.txt') fig = plt.figure()
ax = fig.add_subplot(111)
#ax.scatter(datingDataMat[:,1], datingDataMat[:,2])#没有分类信息的绘图 #以下for循环用于把分类字符串转换成数字:largeDoses=3,smallDoses=2,didntLike=1,(如果用文件datingTestSet2.txt则不用此循环)
labels=[]
for label in datingLabels:
if label=='largeDoses':
labels.append(3)
elif label=='smallDoses':
labels.append(2)
else:
labels.append(1) #以下for循环用于绘图,包含分类信息
ax.scatter(datingDataMat[:,1], datingDataMat[:,2],15.0*array(labels), 15.0*array(labels))
plt.show()
上代码将绘制如下图:
代码解释:上述代码利用变量datingLabels存储的类标签属性,在散点图上绘制了色彩不等、尺寸不同的点。
4.准备数据:归一化数值
表2-3】约会网站原始数据改进之后的样本数据:
【公式:计算两样本间距离公式】:
多个样本同样适用:
例】对于本例,计算样本3、4间距离是:
为什么要数值规一】:上面方程中数字差值最大的属性对计算结果的影响最大,也就是说,每年获取的飞行常客里程数对于计算结果的影响将远远大于表2-3中其他两个特征——玩视频游戏的和每周消费冰淇淋公升数——的影响。而产生这种现象的唯一原因,仅仅是因为飞行常客里程数远大于其他特征值。但海伦认为这三种特征是同等重要的,因此作为三个等权重的特征之一,飞行常客里程数并不应该如此严重地影响到计算结果。
常用规一方式】我们通常采用的方法是将数值归一化,如将取值范围处理为0到1或者-1到1之间。
【规一公式】:newValue = (oldValue-min)/(max-min)
规一公式解释:
min:数据集中的 每一列 的 最小特征值,
max:数据集中的 每一列 的 最大特征值
newValue:要求的最终规一值
oldvalue:要换成规一值的值
最终函数如下,也写在knn.py里:
from numpy import * #导入科学计算包
import operator #运算符模块,k近邻算法执行排序操作时将使用这个模块提供的函数 #规一化大数值函数:用于处理部分数值太大情形
def autoNorm(dataSet):
minVals = dataSet.min(0) #返回每一列的最小值组成的列表,结果[0. 0. 0.00156]
maxVals = dataSet.max(0) #返回每一列的最大值组成的列表,结果[9.1273000e+04 2.0919349e+01 1.6955170e+00](e+04表示:9.1273*1000)
ranges = maxVals - minVals #返回最大-最小差值,结果[9.1273000e+04 2.0919349e+01 1.6943610e+00]
normDataSet = zeros(shape(dataSet)) #=zero(shape(1000,3))=1000行3列以0填充的矩阵
m = dataSet.shape[0] #获取维度的第一个数据即行数,m=1000
normDataSet = dataSet - tile(minVals, (m, 1)) #原数矩阵-最小数集矩阵(把最小列表转换成1000行1列与输入集一样的矩阵后才能运算)
normDataSet = normDataSet / tile(ranges, (m, 1)) # ❶ 特征值相除 (完成规一运算(oldValue-min)/(max-min))
return normDataSet, ranges, minVals #返回:规一值,(max-min),最小值 #运行函数部分
if __name__=='__main__':
datingDataMat, datingLabels = file2matrix('datingTestSet.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
代码解释:也可以只返回normMat矩阵,但是下一节我们将需要取值范围和最小值归一化测试数据
运行2:或在命令窗口进入knn.py所在目录后运行(记得注释掉if __name__..:以下的内容):
>>> reload(kNN)
>>> normMat, ranges, minVals = kNN.autoNorm(datingDataMat)
>>> normMat
array([[ 0.33060119, 0.58918886, 0.69043973],
[ 0.49199139, 0.50262471, 0.13468257],
[ 0.34858782, 0.68886842, 0.59540619],
...,
[ 0.93077422, 0.52696233, 0.58885466],
[ 0.76626481, 0.44109859, 0.88192528],
[ 0.0975718 , 0.02096883, 0.02443895]])
>>> ranges
array([ 8.78430000e+04, 2.02823930e+01, 1.69197100e+00])
>>> minVals
array([ 0. , 0. , 0.001818])
5.测试算法:作为完整程序验证分类器
程序如下:
#以下函数:找一些数据进行算法测试,算出错误率
def datingClassTest():
hoRatio = 0.1 #取出 10%
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') #调用之前写的函数将数据转矩阵
normMat, ranges, minVals = autoNorm(datingDataMat) #将数值规一化
m = normMat.shape[0] #求出数值行数,1000
numTestVecs = int(m*hoRatio) #取出百分之十用于测试,1000*0.1=100
errorCount = 0.0 #用于计算错误总数
for i in range(numTestVecs): #循环100个
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3) #k值函数(测试集0-99行所有列,学习集100-最后一行所有列,标签从100行开始,k=3
print ("the classifier came back with: %s, the real answer is: %s" % (classifierResult, datingLabels[i])) #括号内(函数算出的结果,标签实际结果)
if (classifierResult != datingLabels[i]): errorCount += 1.0 #如果学习结果!= 实际结果,错误+1
print ("the total error rate is: %f" % (errorCount/float(numTestVecs))) #错误比率=错误数/总测试数
print (errorCount) #输出错误数
运行方法1:在最后加入如下代码:
if __name__=='__main__':
datingClassTest()
运行方法2:在文件夹内打开命令窗口:
import knn
>>> knn.datingClassTest()
6.使用算法:构建完整可用系统
最后总结综合一下函数:
from numpy import * #导入科学计算包
import operator #运算符模块,k近邻算法执行排序操作时将使用这个模块提供的函数 def createDataSet():
group=array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
labels=['A','A','B','B']
return group,labels #k近邻分类函数
def classify0(inX, dataSet, labels, k):
dataSetSize = dataSet.shape[0]#求数据集的维度
diffMat = tile(inX, (dataSetSize,1)) - dataSet
sqDiffMat = diffMat**2
sqDistances = sqDiffMat.sum(axis=1) #axis=0是按照行求和,axis=1是按照列进行求和
distances = sqDistances**0.5 #开根号
sortedDistIndicies = distances.argsort()#把向量中每个元素进行排序,结果是元素的索引形成的向量
classCount={}
#❷ (以下两行)选择距离最小的k个点
for i in range(k):
voteIlabel = labels[sortedDistIndicies[i]]
classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1 #❸ 排序。 3.5以上版本,原classCount.iteritems()变为classCount.items()
sortedClassCount = sorted(classCount.items(),key=operator.itemgetter(1), reverse=True)
return sortedClassCount[0][0] #文件转矩阵函数开始
def file2matrix(filename):
fr=open(filename) #读取文档
arraylines=fr.readlines() #读取每行,结果为列表格式
lengthlines=len(arraylines) #获取列表长度,相当于文档行数
mats=zeros((lengthlines,3)) #创建一个以0填充的矩阵:(lengthlines行,3列) classLabelVector = [] #创建分类标签列表
i=0
for line in arraylines: #处理列表
line=line.strip() #去除每行列表两边空格、回车等
listFromLine=line.split('\t') #用Tab键 分割列表为:[40920\t8.326976\t0.953952\tlargeDoses](\t千万别写错/t,否则报错:“could not convert string to float:”)
mats[i,:]=listFromLine[0:3] #把列表前3个数字填入mats的矩阵:[40920\t8.326976\t0.953952]
#if listFromLine[-1]=='largeDoses':
classLabelVector.append(int(listFromLine[-1])) #把列表最后一项添加入classLabelVector列表,顺序为先进排在前面,后进排后面(原int()去除,否则报错)
i+=1
# # 以下for循环用于把分类字符串转换成数字:largeDoses=3,smallDoses=2,didntLike=1(用于兼容py3.x以后版本字符不能直接int为数字问题)
# labels = []
# for label in classLabelVector:
# if label == 'largeDoses':
# labels.append(3)
# elif label == 'smallDoses':
# labels.append(2)
# else:
# labels.append(1)
return mats,classLabelVector #返回训练矩阵,和对应的分类标签 #规一化大数值函数:用于处理部分数值太大情形
def autoNorm(dataSet):
minVals = dataSet.min(0) #返回每一列的最小值组成的列表,结果[0. 0. 0.00156]
maxVals = dataSet.max(0) #返回每一列的最大值组成的列表,结果[9.1273000e+04 2.0919349e+01 1.6955170e+00](e+04表示:9.1273*1000)
ranges = maxVals - minVals #返回最大-最小差值,结果[9.1273000e+04 2.0919349e+01 1.6943610e+00]
normDataSet = zeros(shape(dataSet)) #=zero(shape(1000,3))=1000行3列以0填充的矩阵
m = dataSet.shape[0] #获取维度的第一个数据即行数,m=1000
normDataSet = dataSet - tile(minVals, (m, 1)) #原数矩阵-最小数集矩阵(把最小列表转换成1000行1列与输入集一样的矩阵后才能运算)
normDataSet = normDataSet / tile(ranges, (m, 1)) # ❶ 特征值相除 (完成规一运算(oldValue-min)/(max-min))
return normDataSet, ranges, minVals #返回:规一值,(max-min),最小值 #以下函数:找一些数据进行算法测试,算出错误率
def datingClassTest():
hoRatio = 0.1 #取出 10%
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt') #调用之前写的函数将数据转矩阵
normMat, ranges, minVals = autoNorm(datingDataMat) #将数值规一化
m = normMat.shape[0] #求出数值行数,1000
numTestVecs = int(m*hoRatio) #取出百分之十用于测试,1000*0.1=100
errorCount = 0.0 #用于计算错误总数
for i in range(numTestVecs): #循环100个
classifierResult = classify0(normMat[i,:],normMat[numTestVecs:m,:],datingLabels[numTestVecs:m],3) #k值函数(测试集0-99行所有列,学习集100-最后一行所有列,标签从100行开始,k=3
print ("the classifier came back with: %s, the real answer is: %s" % (classifierResult, datingLabels[i])) #括号内(函数算出的结果,标签实际结果)
if (classifierResult != datingLabels[i]): errorCount += 1.0 #如果学习结果!= 实际结果,错误+1
print ("the total error rate is: %f" % (errorCount/float(numTestVecs))) #错误比率=错误数/总测试数
print (errorCount) #输出错误数 #面向个人的函数
def classifyPerson():
resultList = ['一点也不喜欢','有一点点啦', '非常喜欢']
percentTats = float(input("玩电子游戏的时间百分比?"))
ffMiles = float(input("每年获得的飞行常客里程?"))
iceCream = float(input("每年消耗的冰淇淋升数?"))
datingDataMat,datingLabels = file2matrix('datingTestSet2.txt')
normMat, ranges, minVals = autoNorm(datingDataMat)
inArr = array([ffMiles, percentTats, iceCream])
classifierResult = classify0((inArr-minVals)/ranges,normMat,datingLabels,3)
print ("你可能喜欢这个人: ",resultList[classifierResult - 1]) if __name__=='__main__':
classifyPerson()
# matss,labelss=file2matrix('datingTestSet.txt')
# print(matss,labelss)
#datingClassTest() # datingDataMat, datingLabels = file2matrix('datingTestSet.txt')
# normMat, ranges, minVals = autoNorm(datingDataMat) # #groups,labels=createDataSet()
# #print(classify0([1,0], groups, labels, 2))
#
# a,b=file2matrix('datingTestSet.txt')
# print(a)
# print(b)
运行:
runfile('C:/Users/Administrator/Desktop/机学-pdf/机器学习实战/knn.py', wdir='C:/Users/Administrator/Desktop/机学-pdf/机器学习实战')
玩电子游戏的时间百分比?>? 50
每年获得的飞行常客里程?>? 90000
每年消耗的冰淇淋升数?>? 800
你可能喜欢这个人: 非常喜欢
目录内容:
2.在约会网站上使用k近邻算法的更多相关文章
- 机器学习实战笔记一:K-近邻算法在约会网站上的应用
K-近邻算法概述 简单的说,K-近邻算法采用不同特征值之间的距离方法进行分类 K-近邻算法 优点:精度高.对异常值不敏感.无数据输入假定. 缺点:计算复杂度高.空间复杂度高. 适用范围:数值型和标称型 ...
- 使用K近邻算法改进约会网站的配对效果
1 定义数据集导入函数 import numpy as np """ 函数说明:打开并解析文件,对数据进行分类:1 代表不喜欢,2 代表魅力一般,3 代表极具魅力 Par ...
- 机器学习(四) 分类算法--K近邻算法 KNN (上)
一.K近邻算法基础 KNN------- K近邻算法--------K-Nearest Neighbors 思想极度简单 应用数学知识少 (近乎为零) 效果好(缺点?) 可以解释机器学习算法使用过程中 ...
- 02机器学习实战之K近邻算法
第2章 k-近邻算法 KNN 概述 k-近邻(kNN, k-NearestNeighbor)算法是一种基本分类与回归方法,我们这里只讨论分类问题中的 k-近邻算法. 一句话总结:近朱者赤近墨者黑! k ...
- 机器学习——KNN算法(k近邻算法)
一 KNN算法 1. KNN算法简介 KNN(K-Nearest Neighbor)工作原理:存在一个样本数据集合,也称为训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分 ...
- 机器学习实战 - python3 学习笔记(一) - k近邻算法
一. 使用k近邻算法改进约会网站的配对效果 k-近邻算法的一般流程: 收集数据:可以使用爬虫进行数据的收集,也可以使用第三方提供的免费或收费的数据.一般来讲,数据放在txt文本文件中,按照一定的格式进 ...
- 用Python从零开始实现K近邻算法
KNN算法的定义: KNN通过测量不同样本的特征值之间的距离进行分类.它的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的样本中的大多数属于某一个类别,则该样本也属于这个类别.K通 ...
- R语言学习笔记—K近邻算法
K近邻算法(KNN)是指一个样本如果在特征空间中的K个最相邻的样本中的大多数属于某一个类别,则该样本也属于这个类别,并具有这个类别上样本的特性.即每个样本都可以用它最接近的k个邻居来代表.KNN算法适 ...
- 02-18 scikit-learn库之k近邻算法
目录 scikit-learn库之k近邻算法 一.KNeighborsClassifier 1.1 使用场景 1.2 代码 1.3 参数详解 1.4 方法 1.4.1 kneighbors([X, n ...
随机推荐
- sklearn实现多分类逻辑回归
sklearn实现多分类逻辑回归 #二分类逻辑回归算法改造适用于多分类问题1.对于逻辑回归算法主要是用回归的算法解决分类的问题,它只能解决二分类的问题,不过经过一定的改造便可以进行多分类问题,主要的改 ...
- 记一次海洋cms任意代码执行漏洞拿shell(url一句话)
实验环境:海洋CMS6.54(后续版本已该洞已补) 1.后台登录尝试 这个站点是个测试站,站里没什么数据. 进入admin.php,是带验证码的后台登录系统,没有验证码的可以用bp爆破.有验证码的也有 ...
- Vue + Webpack 根据不同环境打包
修改 prod.env.js // 当前正在运行的脚本名称 const TARGET = process.env.npm_lifecycle_event // 第一个参数 let argv = pro ...
- 攻防世界web新手区(3)
xff_referer:http://111.198.29.45:43071 打开网址,显示出这个页面: X-Forwarded-For:简称XFF头,它代表客户端,也就是HTTP的请求端真实的IP, ...
- 【转置】使用mysql转置表格行和列
1.原始表 2.查询结果表 3.查询语句 1 SELECT 2 year1, 3 SUM( CASE WHEN mon= 1 THEN account END ) AS m1, 4 SUM( CASE ...
- vue 中使用 echarts 自适应问题
echarts 自带的自适应方法 resize() 具体用法: let xxEcharts = this.$echarts.init(document.getElementById('xxx')) ...
- python 字典复制(存疑)
import copy x = {'a':1,'b':[2,3,4]} y = x.copy() z = copy.deepcopy(x) print(x) print(y) print(z) pri ...
- swing开发图形界面工具配置(可自由拖控件上去)
swing开发图形界面工具,eclipse swing图形化操作界面工具配置 1.有一个小功能要有一个界面,之前知道有一个 图形化界面的(就是可以往上面拖控件布局的工具)JBuilder,今天上午就下 ...
- eshop7-mysql
1. Mysql 安装 执行 yum -y install mysql-server 注意:(1)是否使用sudo 权限执行请根据您具体环境来决定 (2)检查是否已经安装mysql-server rp ...
- Xcode8.0+和最新的Xcode9.0beta安装Alcatraz插件
1.安装Alcatraz 1.1终端中输入 rm -rf ~/Library/Application\ Support/Developer/Shared/Xcode/Plug-ins/Alcatraz ...