-

论文地址:https://arxiv.org/abs/1604.01325

contribution is twofold:
(i) we leverage a ranking framework to learn convolution and projection weights that are used to build the region features;
(ii) we employ a region proposal network to learn which regions should be pooled to form the final global descriptor.
 
当前最先进的是:

the state of the art is currently held by conventional methods relying on local descriptor matching and re-ranking with elaborate spatial verfication
 
当前使用CNN被限制在:using a pre-trained network as local feature extractor
当前的难点和解决方法有有:
1)图像被压缩还要保留大部分细节;本文可以精确的表达不同大小的长宽比的图像,解决CNN缺少的几何不变的特性;
2)深度学习的图像检索性能落后于传统方法的原因是缺少特定实例检索任务的数据集,基于深度学习的图像检索一般是使用Imagenet预训练的网络提取局部特征,这些特征被用来学习不同的语义分类,但是在类内的变化却是鲁棒的,这对实例检索不利,因为we are interested in distinguishing between particular objects – even if they belong to the same semantic  category。
 
本文的解决手段:
1)建立在R-MAC(regional maximum activation of convolution)基础之上, It aggregates several image regions into a compact feature vector of fixed length and is thus robust to scale and translation(平移).这种表示可以处理不同长宽比的高分辨率图像,并获得相当好的准确性。构建R-MAC表示所涉及的所有步骤都是可区分的,因此可以以端到端的方式学习权重;
2)use a three-stream Siamese network that explicitly optimizes the weights of the R-MAC representation for the image retrieval task by using a triplet ranking loss;

3)使用Landmarks dataset,并提出清理的方法;

4)池化机制使用region proposal network而不是rigid grid。

rigid grid的问题:

First, as the grid is independent of the image content,it is unlikely that any of the grid regions accurately align with the object of interest.
Second, many of the regions only cover background.
RPN的优点:
First, the region proposals typically cover the object of interest more tightly than the rigid grid.
Second, even if they do not overlap exactly with the region of interest, most of the proposals do overlap significantly with it, which means that increasing the number of proposals per image not only helps to increase the coverage but also helps in the many-to-many matching.
Representations of different images can be then compared using the dot-product(点积)。
 
 
使用 shifting and a fully connected (FC) layer代替PCA
 

Deep Image Retrieval: Learning global representations for image search In ECCV, 2016学习笔记的更多相关文章

  1. Learning to Track at 100 FPS with Deep Regression Networks ECCV 2016 论文笔记

    Learning to Track at 100 FPS with Deep Regression Networks   ECCV 2016  论文笔记 工程网页:http://davheld.git ...

  2. 论文解读(GraRep)《GraRep: Learning Graph Representations with Global Structural Information》

    论文题目:<GraRep: Learning Graph Representations with Global Structural Information>发表时间:  CIKM论文作 ...

  3. Deep learning with Python 学习笔记(5)

    本节讲深度学习用于文本和序列 用于处理序列的两种基本的深度学习算法分别是循环神经网络(recurrent neural network)和一维卷积神经网络(1D convnet) 与其他所有神经网络一 ...

  4. Deep High-Resolution Representation Learning for Human Pose Estimation

    Deep High-Resolution Representation Learning for Human Pose Estimation 2019-08-30 22:05:59 Paper: CV ...

  5. Deep Learning(深度学习)学习笔记整理

    申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎样的表 ...

  6. Deep Learning(深度学习)学习笔记整理系列之(五)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  7. 【转载】Deep Learning(深度学习)学习笔记整理

    http://blog.csdn.net/zouxy09/article/details/8775360 一.概述 Artificial Intelligence,也就是人工智能,就像长生不老和星际漫 ...

  8. Deep Learning(深度学习)学习笔记整理系列之(八)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  9. Deep Learning(深度学习)学习笔记整理系列之(七)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

随机推荐

  1. git分支在项目中管理

    实际项目中如何使用Git做分支管理 2018年06月24日 18:08:24 ShuSheng007 阅读数:9241   版权声明: https://blog.csdn.net/ShuSheng00 ...

  2. Redis Hash 基本操作

    public void StoreHash(string key,string value) { _redisClient.SetEntryInHash("test", key, ...

  3. MySQL高级 InnoDB 和 MyISAM 的区别

    InnoDB:支持事务处理等不加锁读取支持外键支持行锁不支持FULLTEXT类型的索引不保存表的具体行数,扫描表来计算有多少行DELETE 表时,是一行一行的删除InnoDB 把数据和索引存放在表空间 ...

  4. 1146. Snapshot Array

    Implement a SnapshotArray that supports the following interface: SnapshotArray(int length) initializ ...

  5. js学习:基本语法结构

    语句 JavaScript 程序的执行单位为行(line),也就是一行一行地执行.一般情况下,每一行就是一个语句. 语句(statement)是为了完成某种任务而进行的操作,比如下面就是一行赋值语句. ...

  6. 吴裕雄 Bootstrap 前端框架开发——Bootstrap 表格:让表格更加紧凑

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  7. WebVR大潮来袭时,前端开发能做些什么

    WebVR大潮来袭时,前端开发能做些什么?     WebVR即web + VR的体验方式,我们可以戴着头显享受沉浸式的网页,新的API标准让我们可以使用js语言来开发.本文将介绍如何快速开发一个We ...

  8. Locale

    1. Locale 概述 2. Windows 区域设置 3 Linux Locale 3.1 Linux Locale 语言环境名称格式 3.2 常用区域描述(简写)日期习惯 3.3 日期显示格式 ...

  9. Linux/CentOS环境下如何安装和配置PhantomJS工作环境

    PhantomJS 是一个基于WebKit的服务器端 JavaScript API.它全面支持web而不需浏览器支持,其快速,原生支持各种Web标准: DOM 处理, CSS 选择器, JSON, C ...

  10. 119、Java中String类之通过isEmpty判断是否为空字符串

    01.代码如下: package TIANPAN; /** * 此处为文档注释 * * @author 田攀 微信382477247 */ public class TestDemo { public ...