-

论文地址:https://arxiv.org/abs/1604.01325

contribution is twofold:
(i) we leverage a ranking framework to learn convolution and projection weights that are used to build the region features;
(ii) we employ a region proposal network to learn which regions should be pooled to form the final global descriptor.
 
当前最先进的是:

the state of the art is currently held by conventional methods relying on local descriptor matching and re-ranking with elaborate spatial verfication
 
当前使用CNN被限制在:using a pre-trained network as local feature extractor
当前的难点和解决方法有有:
1)图像被压缩还要保留大部分细节;本文可以精确的表达不同大小的长宽比的图像,解决CNN缺少的几何不变的特性;
2)深度学习的图像检索性能落后于传统方法的原因是缺少特定实例检索任务的数据集,基于深度学习的图像检索一般是使用Imagenet预训练的网络提取局部特征,这些特征被用来学习不同的语义分类,但是在类内的变化却是鲁棒的,这对实例检索不利,因为we are interested in distinguishing between particular objects – even if they belong to the same semantic  category。
 
本文的解决手段:
1)建立在R-MAC(regional maximum activation of convolution)基础之上, It aggregates several image regions into a compact feature vector of fixed length and is thus robust to scale and translation(平移).这种表示可以处理不同长宽比的高分辨率图像,并获得相当好的准确性。构建R-MAC表示所涉及的所有步骤都是可区分的,因此可以以端到端的方式学习权重;
2)use a three-stream Siamese network that explicitly optimizes the weights of the R-MAC representation for the image retrieval task by using a triplet ranking loss;

3)使用Landmarks dataset,并提出清理的方法;

4)池化机制使用region proposal network而不是rigid grid。

rigid grid的问题:

First, as the grid is independent of the image content,it is unlikely that any of the grid regions accurately align with the object of interest.
Second, many of the regions only cover background.
RPN的优点:
First, the region proposals typically cover the object of interest more tightly than the rigid grid.
Second, even if they do not overlap exactly with the region of interest, most of the proposals do overlap significantly with it, which means that increasing the number of proposals per image not only helps to increase the coverage but also helps in the many-to-many matching.
Representations of different images can be then compared using the dot-product(点积)。
 
 
使用 shifting and a fully connected (FC) layer代替PCA
 

Deep Image Retrieval: Learning global representations for image search In ECCV, 2016学习笔记的更多相关文章

  1. Learning to Track at 100 FPS with Deep Regression Networks ECCV 2016 论文笔记

    Learning to Track at 100 FPS with Deep Regression Networks   ECCV 2016  论文笔记 工程网页:http://davheld.git ...

  2. 论文解读(GraRep)《GraRep: Learning Graph Representations with Global Structural Information》

    论文题目:<GraRep: Learning Graph Representations with Global Structural Information>发表时间:  CIKM论文作 ...

  3. Deep learning with Python 学习笔记(5)

    本节讲深度学习用于文本和序列 用于处理序列的两种基本的深度学习算法分别是循环神经网络(recurrent neural network)和一维卷积神经网络(1D convnet) 与其他所有神经网络一 ...

  4. Deep High-Resolution Representation Learning for Human Pose Estimation

    Deep High-Resolution Representation Learning for Human Pose Estimation 2019-08-30 22:05:59 Paper: CV ...

  5. Deep Learning(深度学习)学习笔记整理

    申明:本文非笔者原创,原文转载自:http://www.sigvc.org/bbs/thread-2187-1-3.html 4.2.初级(浅层)特征表示 既然像素级的特征表示方法没有作用,那怎样的表 ...

  6. Deep Learning(深度学习)学习笔记整理系列之(五)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  7. 【转载】Deep Learning(深度学习)学习笔记整理

    http://blog.csdn.net/zouxy09/article/details/8775360 一.概述 Artificial Intelligence,也就是人工智能,就像长生不老和星际漫 ...

  8. Deep Learning(深度学习)学习笔记整理系列之(八)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

  9. Deep Learning(深度学习)学习笔记整理系列之(七)

    Deep Learning(深度学习)学习笔记整理系列 zouxy09@qq.com http://blog.csdn.net/zouxy09 作者:Zouxy version 1.0 2013-04 ...

随机推荐

  1. 转载和补充:Oracle中的一些特殊字符

    oracle通配符,运算符的使用 用于where比较条件的有: 等于:=.<.<=.>.>=.<> 包含:in.not in exists.not exists 范 ...

  2. 树莓派4B踩坑指南 - (12)谷歌浏览器书签同步

    书签和插件不能同步真的是不方便..使用时删掉※符号 过程比较复杂,坑很多,但确认有效 免费访问说明: https://github.com/max2max/fre※es※s 软件安装 https:// ...

  3. MYSQL优化考虑十个方面

    1)索引 2)sql优化 3)锁 4)延迟 5)参数优化 6)连接数 7)cpu 8)iops 9)磁盘 10)内存

  4. pycharm 右键无法显示unittest框架&&解决右键只有unittest 运行如何取消右键显示进行普通run

    上面是普通文件和unittest 导入的文件右键快捷键显示情况,可以看出两者快捷键都是ctr+shift+F10,如果你是右键模式想运行unitest,但是又不知道哪里配置unittest直接运行快捷 ...

  5. Navicat Premium 12安装及激活

    一.安装 百度云下载地址:https://pan.baidu.com/s/1T5BjpBqLtwCy26szcKSdKw 提取码:ujzx 二.激活步骤 ①将navicat-keygen-for-x6 ...

  6. selenium webdriver 模拟鼠标悬浮

    /**模拟鼠标悬浮在某元素上 * @param driver * @param locator */ public static void moveToElement(WebDriver driver ...

  7. twisted 模拟scrapy调度循环

    """模拟scrapy调度循环 """from ori_test import pr_typeimport loggingimport ti ...

  8. python 基础之字符串方法

    字符串 print('chenxi'*8) 测试 D:\python\python.exe D:/untitled/dir/for.py chenxichenxichenxichenxichenxic ...

  9. 吴裕雄--天生自然 JAVA开发学习:解决java.sql.SQLException: The server time zone value报错

    这个异常是时区的错误,因此只你需要设置为你当前系统时区即可,解决方案如下: import java.sql.Connection ; import java.sql.DriverManager ; i ...

  10. git github 对代码的管理

    参考:https://www.cnblogs.com/feynman61/p/9005252.html 一.Git 对远程仓库版本回退 场景: 同事 a.b 同时修改了代码,提交到仓库 同时 c 不熟 ...