文章首发于【陈树义的博客】,点击跳转到原文《线上Kafka突发rebalance异常,如何快速解决?》

Kafka 是我们最常用的消息队列,它那几万、甚至几十万的处理速度让我们为之欣喜若狂。但是随着使用场景的增加,我们遇到的问题也越来越多,其中一个经常遇到的问题就是:rebalance(重平衡)问题。

什么是消费组

要想了解 rebalance,那就得先了解消费组(consumer group)。

消费组指的是多个消费者(consumer)组成起来的一个组,它们共同消费 topic 的所有消息,并且一个 topic 的一个 partition 只能被一个 consumer 消费。

Kafka 为消费者组定义了 5 种状态,它们分别是:Empty、Dead、PreparingRebalance、CompletingRebalance 和 Stable。

了解了这些状态的含义之后,我们来看一张图片,它展示了状态机的各个状态流转。

一个消费者组最开始是 Empty 状态,当重平衡过程开启后,它会被置于 PreparingRebalance 状态等待成员加入,之后变更到 CompletingRebalance 状态等待分配方案,最后流转到 Stable 状态完成重平衡。

当有新成员加入或已有成员退出时,消费者组的状态从 Stable 直接跳到 PreparingRebalance 状态,此时,所有现存成员就必须重新申请加入组。当所有成员都退出组后,消费者组状态变更为 Empty。Kafka 定期自动删除过期位移的条件就是,组要处于 Empty 状态。因此,如果你的消费者组停掉了很长时间(超过 7 天),那么 Kafka 很可能就把该组的位移数据删除了。我相信,你在 Kafka 的日志中一定经常看到下面这个输出:

Removed ✘✘✘ expired offsets in ✘✘✘ milliseconds.

这就是 Kafka 在尝试定期删除过期位移。现在你知道了,只有 Empty 状态下的组,才会执行过期位移删除的操作。

什么是rebalance?

我们都知道 kafka 主要可以分为三大块:生产者、kafka broker、消费者。

而 kafka 怎么均匀地分配某个 topic 下的所有 partition 到各个消费者,从而使得消息的消费速度达到最快,这就是平衡(balance)。而 rebalance(重平衡)其实就是重新进行 partition 的分配,从而使得 partition 的分配重新达到平衡状态。

文章首发于【陈树义的博客】,点击跳转到原文《线上Kafka突发rebalance异常,如何快速解决?》

rebalance的流程

重平衡的完整流程需要消费者端和协调者组件共同参与才能完成。我们先从消费者的视角来审视一下重平衡的流程。

在消费者端,重平衡分为两个步骤:分别是加入组和等待领导消费者(Leader Consumer)分配方案。这两个步骤分别对应两类特定的请求:JoinGroup 请求和 SyncGroup 请求。

JoinGroup请求

当组内成员加入组时,它会向协调者发送 JoinGroup 请求。在该请求中,每个成员都要将自己订阅的主题上报,这样协调者就能收集到所有成员的订阅信息。一旦收集了全部成员的 JoinGroup 请求后,协调者会从这些成员中选择一个担任这个消费者组的领导者。

通常情况下,第一个发送 JoinGroup 请求的成员自动成为领导者。你一定要注意区分这里的领导者和之前我们介绍的领导者副本,它们不是一个概念。这里的领导者是具体的消费者实例,它既不是副本,也不是协调者。这里的领导者指的是消费组(consumer group)的领导者,消费组领导者的任务是收集所有成员的订阅信息,然后根据这些信息,制定具体的分区消费分配方案。

选出领导者之后,协调者会把消费者组订阅信息封装进 JoinGroup 请求的响应体中,然后发给领导者,由领导者统一做出分配方案后,进入到下一步:发送 SyncGroup 请求。

SyncGroup请求

在这一步中,领导者向协调者发送 SyncGroup 请求,将刚刚做出的分配方案发给协调者。值得注意的是,其他成员也会向协调者发送 SyncGroup 请求,只不过请求体中并没有实际的内容。这一步的主要目的是让协调者接收分配方案,然后统一以 SyncGroup 响应的方式分发给所有成员,这样组内所有成员就都知道自己该消费哪些分区了。

接下来,我用一张图来形象地说明一下 JoinGroup 请求的处理过程。

就像前面说的,JoinGroup 请求的主要作用是将组成员订阅信息发送给领导者消费者,待领导者制定好分配方案后,重平衡流程进入到 SyncGroup 请求阶段。

下面这张图描述的是 SyncGroup 请求的处理流程。

SyncGroup 请求的主要目的,就是让协调者把领导者制定的分配方案下发给各个组内成员。当所有成员都成功接收到分配方案后,消费者组进入到 Stable 状态,即开始正常的消费工作。

什么时候会发生rebalance?

前面我们已经说到,rebalance 其实就是对 partition 进行重新分配。那么什么时候会发生 rebalance 呢?其实在以下三种情况下,会触发 rebalance:

  • 订阅 Topic 的分区数发生变化。
  • 订阅的 Topic 个数发生变化。
  • 消费组内成员个数发生变化。例如有新的 consumer 实例加入该消费组或者离开组。

订阅Topic的分区数发生变化

简单地说,就是之前 topic 有 10 个分区,现在变成了 20 个,那么多出来的 10 个分区的数据就没人消费了。那么此时就需要进行重平衡,将新增的 10 个分区分给消费组内的消费者进行消费。所以在这个情况下,会发生重平衡。

订阅的Topic个数发生变化

简单地说,一个 consumer group 如果之前只订阅了 A topic,那么其组内的 consumer 知会消费 A topic 的消息。而如果现在新增订阅了 B topic,那么 kafka 就需要把 B topic 的 partition 分配给组内的 consumer 进行消费。这个分配的过程,其实也是一个 rebalance 的过程。

消费组内成员个数发生变化

我们都知道 kafka 中是以消费组(consumer group)的方式进行消费的,消费组内的消费者共同消费一个 topic 下的消息。而当消费组内成员个数发生变化,例如某个 consumer 离开,或者新 consumer 加入,都会导致消费组内成员个数发生变化,从而导致重平衡。

相比起之前的两个情况,这种情况在实际情况中更加常见。因为订阅分区数、以及订阅 topic 数都是我们主动改变才会发生,而组内消费组成员个数发生变化,则是更加随机的。

文章首发于【陈树义的博客】,点击跳转到原文《线上Kafka突发rebalance异常,如何快速解决?》

下面我们一起分析一下「消费组内成员个数发生变化」的几种情况:

  • 新成员加入
  • 组成员主动离开
  • 组成员崩溃

新成员加入

新成员入组是指组处于 Stable 状态后,有新成员加入。如果是全新启动一个消费者组,Kafka 是有一些自己的小优化的,流程上会有些许的不同。我们这里讨论的是,组稳定了之后有新成员加入的情形。

当协调者收到新的 JoinGroup 请求后,它会通过心跳请求响应的方式通知组内现有的所有成员,强制它们开启新一轮的重平衡。具体的过程和之前的客户端重平衡流程是一样的。现在,我用一张时序图来说明协调者一端是如何处理新成员入组的。

组成员主动离开

何谓主动离组?就是指消费者实例所在线程或进程调用 close() 方法主动通知协调者它要退出。这个场景就涉及到了第三类请求:LeaveGroup 请求。协调者收到 LeaveGroup 请求后,依然会以心跳响应的方式通知其他成员,因此我就不再赘述了,还是直接用一张图来说明。

组成员崩溃

崩溃离组是指消费者实例出现严重故障,突然宕机导致的离组。它和主动离组是有区别的,因为后者是主动发起的离组,协调者能马上感知并处理。但崩溃离组是被动的,协调者通常需要等待一段时间才能感知到,这段时间一般是由消费者端参数 session.timeout.ms 控制的。

也就是说,Kafka 一般不会超过 session.timeout.ms 就能感知到这个崩溃。当然,后面处理崩溃离组的流程与之前是一样的,我们来看看下面这张图。

疑惑

在许多文章中,它们会加多了一个 rebalance 场景,即:「重平衡时协调者对组内成员提交位移的处理」。其实这个要说是 rebalance 场景,有点牵强。我们先来了解下这个场景究竟是什么情况。

正常情况下,每个组内成员都会定期汇报位移给协调者。当重平衡开启时,协调者会给予成员一段缓冲时间,要求每个成员必须在这段时间内快速地上报自己的位移信息,然后再开启正常的 JoinGroup/SyncGroup 请求发送。还是老办法,我们使用一张图来说明。

所以这种场景是指 rebalance 发生之时,留有时间给消费者提交 offset,并不是引起 rebalance 的触发原因(并不是因为提交 offset 引发 rebalance)。因此在我这篇文章里,我并没有将其作为 rebalance 的一种场景。

rebalance问题处理思路

前面我们讲过 rebalance 一般会有 3 种情况,分别是:

  • 新成员加入
  • 组成员主动离开
  • 组成员崩溃

对于「新成员加入」、「组成员主动离开」都是我们主动触发的,能比较好地控制。但是「组成员崩溃」则是我们预料不到的,遇到问题的时候也比较不好排查。但对于「组成员崩溃」也是有一些通用的排查思路的,下面我们就来聊聊「rebalance问题的处理思路」。

要学会处理 rebalance 问题,我们需要先搞清楚 kafaka 消费者配置的四个参数:

  • session.timeout.ms 设置了超时时间
  • heartbeat.interval.ms 心跳时间间隔
  • max.poll.interval.ms 每次消费的处理时间
  • max.poll.records 每次消费的消息数

session.timeout.ms 表示 consumer 向 broker 发送心跳的超时时间。例如 session.timeout.ms = 180000 表示在最长 180 秒内 broker 没收到 consumer 的心跳,那么 broker 就认为该 consumer 死亡了,会启动 rebalance。

heartbeat.interval.ms 表示 consumer 每次向 broker 发送心跳的时间间隔。heartbeat.interval.ms = 60000 表示 consumer 每 60 秒向 broker 发送一次心跳。一般来说,session.timeout.ms 的值是 heartbeat.interval.ms 值的 3 倍以上。

max.poll.interval.ms 表示 consumer 每两次 poll 消息的时间间隔。简单地说,其实就是 consumer 每次消费消息的时长。如果消息处理的逻辑很重,那么市场就要相应延长。否则如果时间到了 consumer 还么消费完,broker 会默认认为 consumer 死了,发起 rebalance。

max.poll.records 表示每次消费的时候,获取多少条消息。获取的消息条数越多,需要处理的时间越长。所以每次拉取的消息数不能太多,需要保证在 max.poll.interval.ms 设置的时间内能消费完,否则会发生 rebalance。

简单来说,会导致崩溃的几个点是:

  • 消费者心跳超时,导致 rebalance。
  • 消费者处理时间过长,导致 rebalance。

消费者心跳超时

我们知道消费者是通过心跳和协调者保持通讯的,如果协调者收不到心跳,那么协调者会认为这个消费者死亡了,从而发起 rebalance。

而 kafka 的消费者参数设置中,跟心跳相关的两个参数为:

  • session.timeout.ms 设置了超时时间
  • heartbeat.interval.ms 心跳时间间隔

这时候需要调整 session.timeout.ms 和 heartbeat.interval.ms 参数,使得消费者与协调者能保持心跳。一般来说,超时时间应该是心跳间隔的 3 倍时间。即 session.timeout.ms 如果设置为 180 秒,那么 heartbeat.interval.ms 最多设置为 60 秒。

为什么要这么设置超时时间应该是心跳间隔的 3 倍时间?因为这样的话,在一个超时周期内就可以有多次心跳,避免网络问题导致偶发失败。

消费者处理时间过长

如果消费者处理时间过长,那么同样会导致协调者认为该 consumer 死亡了,从而发起重平衡。

而 kafka 的消费者参数设置中,跟消费处理的两个参数为:

  • max.poll.interval.ms 每次消费的处理时间
  • max.poll.records 每次消费的消息数

对于这种情况,一般来说就是增加消费者处理的时间(即提高 max.poll.interval.ms 的值),减少每次处理的消息数(即减少 max.poll.records 的值)。

除此之外,超时时间参数(session.timeout.ms)与 消费者每次处理的时间(max.poll.interval.ms)也是有关联的。max.poll.interval.ms 时间不能超过 session.timeout.ms 时间。 因为在 kafka 消费者的实现中,其是单线程去消费消息和执行心跳的,如果线程卡在处理消息,那么这时候即使到时间要心跳了,还是没有线程可以去执行心跳操作。很多同学在处理问题的时候,明明设置了很长的 session.timeout.ms 时间,但最终还是心跳超时了,就是因为没有处理好这两个参数的关联。

对于 rebalance 类问题,简单总结就是:处理好心跳超时问题和消费处理超时问题

  • 对于心跳超时问题。一般是调高心跳超时时间(session.timeout.ms),调整超时时间(session.timeout.ms)和心跳间隔时间(heartbeat.interval.ms)的比例。阿里云官方文档建议超时时间(session.timeout.ms)设置成 25s,最长不超过 30s。那么心跳间隔时间(heartbeat.interval.ms)就不超过 10s。
  • 对于消费处理超时问题。一般是增加消费者处理的时间(max.poll.interval.ms),减少每次处理的消息数(max.poll.records)。阿里云官方文档建议 max.poll.records 参数要远小于当前消费组的消费能力(records < 单个线程每秒消费的条数 x 消费线程的个数 x session.timeout的秒数)。

文章首发于【陈树义的博客】,点击跳转到原文《线上Kafka突发rebalance异常,如何快速解决?》

参考资料

线上Kafka突发rebalance异常,如何快速解决?的更多相关文章

  1. 线上kafka消息堆积,consumer掉线,怎么办?

    线上kafka消息堆积,所有consumer全部掉线,到底怎么回事? 最近处理了一次线上故障,具体故障表现就是kafka某个topic消息堆积,这个topic的相关consumer全部掉线. 整体排查 ...

  2. 一次线上Redis类转换异常排查引发的思考

    之前同事反馈说线上遇到Redis反序列化异常问题,异常如下: XxxClass1 cannot be cast to XxxClass2 已知信息如下: 该异常不是必现的,偶尔才会出现: 出现该异常后 ...

  3. 记一次线上Kafka消息堆积踩坑总结

    2018年05月31日 13:26:59 xiaoguozi0218 阅读数:2018更多 个人分类: 大数据   年后上线的系统,与其他业务系统的通信方式采用了第三代消息系统中间件Kafka.由于是 ...

  4. 一次线上http接口调用不通相关的解决过程

    2016-05-25 08:58:34 昨天线上小白系统因为调用外部http接口,超时不释放,导致页面反应很慢,时间一长,报502错误. 上网查了下,502错误是因为服务对于客户的请求没有得到及时的反 ...

  5. 线上redis服务内存异常分析。

    项目中,新增了一个统计功能,用来统计不同手机型号的每天访问pv,看了下redis2.6有个setbit的功能,于是打算尝尝鲜把 redis从2.4更新到了2.6 因为是租了vps.服务器的内存只有4g ...

  6. thinkphp线上自动加载异常与修复

    项目遇到一个奇怪的问题,本地代码正常,服务器上却不正常. 经过测试,应该是自动加载出了问题,尝试了各种方法, 1.手动加载,发现好麻烦,没完没了. 2.自己写自动加载,写不出来,尴尬. 3.修改配置, ...

  7. 我是如何确认线上CLOSE_WAIT产生的原因及如何解决的。

    1.阐述 内部架构:Tomcat应用程序---> nginx ---> 其他Tomcat应用程序,内部Tomcat应用通过nginx调用其他应用. HTTP插件:HttpClient 4. ...

  8. kafka一直rebalance故障,重复消费

    今天我司线上kafka消息代理出现错误日志,异常rebalance,而且平均间隔2到3分钟就会rebalance一次,分析日志发现比较严重.错误日志如下 08-09 11:01:11 131 pool ...

  9. 关于线上的bug什么时候修复的思考

    这里系统专门指的是那种用户量大的系统,比如有几百万或者上千万的注册会员.因为小系统因为用户量少,不存在这种思考,考虑有时候是多余的.另外还有内部系统,给自己公司内部人员使用的,即便是出现了问题,也不会 ...

随机推荐

  1. Jmeter:运行报:Error occurred starting thread group :线程组, error message:Invalid duration 0 set in Thread Group:线程组, see log file for more details

    最近在用jmeter做压测,上周五压测的脚本,今天早晨结束后. 点击同样的脚本,运行就报Error occurred starting thread group :线程组, error message ...

  2. B/S和C/S架构的区别

    一.B/S架构 什么是B/S模式 B/S模式,即浏览器/服务器模式,是一种从传统的二层CS模式发展起来的新的网络结构模式,其本质是三层结构C/S模式.B/S网络结构模式是基于Intranet的需求而出 ...

  3. 20060518: Alert!

    Alert Received, Shrink My Blog! 转载于:https://www.cnblogs.com/yidinghe/archive/2006/05/18/403089.html

  4. WSFC与DFS

    WSFC里面的文件服务器群集,文件始终是一份,数据始终存放在群集磁盘中,通过群集来维持文件服务器这项服务始终持续可用,在2012之前同一时间WSFC只能有一台节点对外提供文件服务,2012开始群集引入 ...

  5. 安装XCode7.1后,QT5.5出现的各种问题解决方案

    安装XCode7.1后,突然发现QT5.5编译不了程序了.直接在终端输入clang,竟然输出如下的信息. Agreeing to the Xcode/iOS license requires admi ...

  6. PLDroidPlayer 是七牛推出的一款免费的适用于 Android 平台的播放器 SDK,采用全自研的跨平台播放内核,拥有丰富的功能和优异的性能,可高度定制化和二次开发。 https://developer.qiniu.com/pili/sdk/…

    PLDroidPlayer PLDroidPlayer 是一个适用于 Android 平台的音视频播放器 SDK,可高度定制化和二次开发,为 Android 开发者提供了简单.快捷的接口,帮助开发者在 ...

  7. WebStorm 2019 3.3 安装及破解教程附汉化教程

    WebStorm2019 3.3 安装及破解教程附加汉化教程 安装包及破解补丁 链接: https://pan.baidu.com/s/19ATTAW3Tsm0huIJSqYChTw 提取码:1ei7 ...

  8. 数学--数论--Hdu 5793 A Boring Question (打表+逆元)

    There are an equation. ∑0≤k1,k2,⋯km≤n∏1⩽j<m(kj+1kj)%1000000007=? We define that (kj+1kj)=kj+1!kj! ...

  9. ACM-ICPC 2019 山东省省赛总结

    五题手快拿银,不然拿铜,甚至不拿,从结果上来看拿了铜牌对第一年的我们来说算好的,也不算太好. 从拿奖后的第一天,我想写这篇博客,但是我忍了下来,那时候被喜悦冲昏了头脑,当 冷静下来,我开始打算写这篇博 ...

  10. 【K8S】K8S 1.18.2安装dashboard(基于kubernetes-dashboard 2.0.0版本)

    [K8S]K8S 1.18.2安装dashboard(基于kubernetes-dashboard 2.0.0版本) 写在前面 K8S集群部署成功了,如何对集群进行可视化管理呢?别着急,接下来,我们一 ...