pytorch入门2.1构建回归模型初体验(模型构建)
pytorch入门2.x构建回归模型系列:
pytorch入门2.0构建回归模型初体验(数据生成)
pytorch入门2.1构建回归模型初体验(模型构建)
pytorch入门2.2构建回归模型初体验(开始训练)
终于要构建模型啦。这里我们构建的是回归模型,是用神经网络构建的,基本结构是什么样的呢?
你肯定听说过,神经网络有输入层、隐藏层、输出层,一般结构如下图所示(图片来源于网络,侵删):
所以,对比我们之前生成的数据来说,形如x=3我们想得到的输出为y=8。分别对应了上面的输入层和输出层,所以,在此我们要构建中间的隐藏层来模拟那个看不见的函数(我们生成数据的函数,假设是未知的,因为如果是已知的,我们直接用这个函数式子来求输出啦。现在就是利用神经网络强大的对函数的拟合能力,来模拟这个函数)。
下面就来建立第一个模型吧:
class LinearRegression(nn.Module): # 继承父类nn.Module,很多额外的、重要的东西就不用写了,只管自己做的事情就可以(你不是要建立回归模型么)
def __init__(self):
super(LinearRegression,self).__init__() # 调用父类的初始化函数
# 建立隐藏层,下面是三个隐藏层
self.linear = nn.Linear(1,10) # 输入是一个数,所以输出是1,中间建立10个隐藏层节点,此时,你输出的是10个数
self.linear2 = nn.Linear(10,6,bias=True) # 承接上一层的输入,10个数,此层在融合成6个数。这里加了个偏置参数。
self.linear3 = nn.Linear(6,1) # 输出层,承接上面6个数,最终输出一个数
# 至此网络的部件定义完毕
# 网络的部件定义好了,下面开始组装啦,设置数据如何在网络中流动,即前向传播
def forward(self,x): #输入的是x,就是指前面的输入层的输入
# 设置数据流动过程,如果网络非常复杂,此处要注意输入数据的维度,经过各层之后得到的数据维度。
x = F.relu(self.linear(x)) #首先经过一个线性层linear,然后经过一个激活函数relu
x = F.relu(self.linear2(x)) #同上
x = self.linear3(x) # 最终经过最后的线性层,得到结果,结果是1维的哦
return x # 返回最后得到的数据
经过上面之后,一个网络模型就定义完成了,动动脑筋想想我们构建的模型是怎么样的呢?就是形如上面那张图的样子,只是中间的节点数量会变化。
模型定义好了,当然我们用的时候要实例化,我们先实例化一下,打印出来看看模型啥样?
model = LinearRegression()
print(model)
'''
===output===
LinearRegression(
(linear): Linear(in_features=1, out_features=10, bias=True)
(linear2): Linear(in_features=10, out_features=6, bias=True)
(linear3): Linear(in_features=6, out_features=1, bias=True)
)
'''
可以看到模型的形状正如我们上面所介绍,网络模型是有三个线性层,这里把激活函数省略了。
下一节,我们继续介绍如何使用定义好的网络模型去做回归训练啦。
pytorch入门2.1构建回归模型初体验(模型构建)的更多相关文章
- pytorch入门2.2构建回归模型初体验(开始训练)
pytorch入门2.x构建回归模型系列: pytorch入门2.0构建回归模型初体验(数据生成) pytorch入门2.1构建回归模型初体验(模型构建) pytorch入门2.2构建回归模型初体验( ...
- pytorch入门2.0构建回归模型初体验(数据生成)
pytorch入门2.x构建回归模型系列: pytorch入门2.0构建回归模型初体验(数据生成) pytorch入门2.1构建回归模型初体验(模型构建) pytorch入门2.2构建回归模型初体验( ...
- cucumber java从入门到精通(1)初体验
cucumber java从入门到精通(1)初体验 cucumber在ruby环境下表现让人惊叹,作为BDD框架的先驱,cucumber后来被移植到了多平台,有cucumber-js以及我们今天要介绍 ...
- python--爬虫入门(七)urllib库初体验以及中文编码问题的探讨
python系列均基于python3.4环境 ---------@_@? --------------------------------------------------------------- ...
- 2,turicreate入门 - 一个简单的回归模型
turicreate入门系列文章目录 1,turicreate入门 - jupyter & turicreate安装 2,turicreate入门 - 一个简单的回归模型 3,turicrea ...
- pytorch 入门指南
两类深度学习框架的优缺点 动态图(PyTorch) 计算图的进行与代码的运行时同时进行的. 静态图(Tensorflow <2.0) 自建命名体系 自建时序控制 难以介入 使用深度学习框架的优点 ...
- PyTorch专栏(六): 混合前端的seq2seq模型部署
欢迎关注磐创博客资源汇总站: http://docs.panchuang.net/ 欢迎关注PyTorch官方中文教程站: http://pytorch.panchuang.net/ 专栏目录: 第一 ...
- Pytorch入门——手把手教你MNIST手写数字识别
MNIST手写数字识别教程 要开始带组内的小朋友了,特意出一个Pytorch教程来指导一下 [!] 这里是实战教程,默认读者已经学会了部分深度学习原理,若有不懂的地方可以先停下来查查资料 目录 MNI ...
- grunt 构建工具(build tool)初体验
操作环境:win8 系统,建议使用 git bash (window下的命令行工具) 1,安装node.js 官网下载:https://nodejs.org/ 直接点击install ,会根据你的操 ...
随机推荐
- js性能优化之---防抖函数
使用场景 input的时时触发搜索功能 scroll事件的滚动条位置的监测 resize事件监听窗口变化等 举个栗子(input框时时触发搜索功能) 普通未防抖款 var textElement = ...
- 阿里云服务器 ECS Ubuntu系统下PHP,MYSQL,APACHE2的安装配置
1.系统更新,必须更新,否则有些软件会找不到. apt-get update apt-get upgrade 2.安装mysql sudo apt-get install mysql-server 3 ...
- Linux的svn服务器搭建
最近把Linux上的一些服务器学习了一遍 我这里更新一下笔记——SVN服务器 我从其他博主上学习了一下——转载https://www.cnblogs.com/mymelon/p/5483215.htm ...
- vscode环境配置(三)——解决控制台终端中文输出乱码
由于系统终端默认编码为GBK,所以需要修改为UTF-8 方法一 打开cmd输入chcp查看编码格式,查看以及修改如下图所示: 方法二
- python+selenium 自动化测试框架-学习记录
本人小白一枚,想着把学习时的东西以博客的方式记录下来,文章中有不正确的地方请大佬多多指点!!共同学习 前期准备 安装python3.selenium.下载对应版本的webdriver:安装所需的第三 ...
- js时间格式转换,传入时间戳,第二哥参数是格式,也可不传
export function parseTime(time, pattern) { if (arguments.length === 0 || !time) { return null } cons ...
- sku算法介绍及实现
前言 做过电商项目前端售卖的应该都遇见过不同规格产品库存的计算问题,业界名词叫做sku(stock Keeping Unit),库存量单元对应我们售卖的具体规格,比如一部手机具体型号规格,其中ipho ...
- 00016-layui 动态加载菜单 laytpl
<%@ page contentType="text/html;charset=UTF-8" language="java" %> <%@ i ...
- python argparse总结
python2.7废除optparse,原因:http://code.google.com/p/argparse/ 说了半天好像是重开了个小号练级 抓紧写下来一会又得忘了 用法: import arg ...
- AVIRIS 简介
AVIRIS 是指 机载可见光近红外成像光谱(Airborne Visible InfraRed Imaging Spectrometer).是由美国NASA下属的喷气动力实验室(JPL)开发和维护的 ...