Redis之分布式锁实现
点赞再看,养成习惯,微信搜索【三太子敖丙】关注这个互联网苟且偷生的工具人。
本文 GitHub https://github.com/JavaFamily 已收录,有一线大厂面试完整考点、资料以及我的系列文章。
前言
上一章节我提到了基于zk分布式锁的实现,这章节就来说一下基于Redis的分布式锁实现吧。
zk实现分布式锁的传送门:zk分布式锁
在开始提到Redis分布式锁之前,我想跟大家聊点Redis的基础知识。
说一下Redis的两个命令:
SETNX key value
setnx
是SET if Not eXists(如果不存在,则 SET)的简写。

用法如图,如果不存在set成功返回int的1,这个key存在了返回0。
SETEX key seconds value
将值 value
关联到 key
,并将 key
的生存时间设为 seconds
(以秒为单位)。
如果 key
已经存在,setex
命令将覆写旧值。
有小伙伴肯定会疑惑万一set value 成功 set time失败,那不就傻了么,这啊Redis官网想到了。
setex
是一个原子性(atomic)操作,关联值和设置生存时间两个动作会在同一时间内完成。

我设置了10秒的失效时间,ttl命令可以查看倒计时,负的说明已经到期了。
跟大家讲这两个命名也是有原因的,因为他们是Redis实现分布式锁的关键。
正文
开始前还是看看场景:

我依然是创建了很多个线程去扣减库存inventory,不出意外的库存扣减顺序变了,最终的结果也是不对的。
单机加synchronized或者Lock这些常规操作我就不说了好吧,结果肯定是对的。

我先实现一个简单的Redis锁,然后我们再实现分布式锁,可能更方便大家的理解。
还记得上面我说过的命令么,实现一个单机的其实比较简单,你们先思考一下,别往下看。
setnx

可以看到,第一个成功了,没释放锁,后面的都失败了,至少顺序问题问题是解决了,只要加锁,缩放后面的拿到,释放如此循环,就能保证按照顺序执行。
但是你们也发现问题了,还是一样的,第一个仔set成功了,但是突然挂了,那锁就一直在那无法得到释放,后面的线程也永远得不到锁,又死锁了。
所以....
setex
知道我之前说这个命令的原因了吧,设置一个过期时间,就算线程1挂了,也会在失效时间到了,自动释放。
我这里就用到了nx和px的结合参数,就是set值并且加了过期时间,这里我还设置了一个过期时间,就是这时间内如果第二个没拿到第一个的锁,就退出阻塞了,因为可能是客户端断连了。

加锁
整体加锁的逻辑比较简单,大家基本上都能看懂,不过我拿到当前时间去减开始时间的操作感觉有点笨, System.currentTimeMillis()消耗很大的。
/**
* 加锁
*
* @param id
* @return
*/
public boolean lock(String id) {
Long start = System.currentTimeMillis();
try {
for (; ; ) {
//SET命令返回OK ,则证明获取锁成功
String lock = jedis.set(LOCK_KEY, id, params);
if ("OK".equals(lock)) {
return true;
}
//否则循环等待,在timeout时间内仍未获取到锁,则获取失败
long l = System.currentTimeMillis() - start;
if (l >= timeout) {
return false;
}
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
} finally {
jedis.close();
}
}
System.currentTimeMillis消耗大,每个线程进来都这样,我之前写代码,就会在服务器启动的时候,开一个线程不断去拿,调用方直接获取值就好了,不过也不是最优解,日期类还是有很多好方法的。
@Service
public class TimeServcie {
private static long time;
static {
new Thread(new Runnable(){
@Override
public void run() {
while (true){
try {
Thread.sleep(5);
} catch (InterruptedException e) {
e.printStackTrace();
}
long cur = System.currentTimeMillis();
setTime(cur);
}
}
}).start();
}
public static long getTime() {
return time;
}
public static void setTime(long time) {
TimeServcie.time = time;
}
}
解锁
解锁的逻辑更加简单,就是一段Lua的拼装,把Key做了删除。
你们发现没,我上面加锁解锁都用了UUID,这就是为了保证,谁加锁了谁解锁,要是你删掉了我的锁,那不乱套了嘛。
LUA是原子性的,也比较简单,就是判断一下Key和我们参数是否相等,是的话就删除,返回成功1,0就是失败。
/**
* 解锁
*
* @param id
* @return
*/
public boolean unlock(String id) {
String script =
"if redis.call('get',KEYS[1]) == ARGV[1] then" +
" return redis.call('del',KEYS[1]) " +
"else" +
" return 0 " +
"end";
try {
String result = jedis.eval(script, Collections.singletonList(LOCK_KEY), Collections.singletonList(id)).toString();
return "1".equals(result) ? true : false;
} finally {
jedis.close();
}
}
验证
我们可以用我们写的Redis锁试试效果,可以看到都按照顺序去执行了

思考
大家是不是觉得完美了,但是上面的锁,有不少瑕疵的,我没思考很多点,你或许可以思考一下,源码我都开源到我的GItHub了。
而且,锁一般都是需要可重入行的,上面的线程都是执行完了就释放了,无法再次进入了,进去也是重新加锁了,对于一个锁的设计来说肯定不是很合理的。
我不打算手写,因为都有现成的,别人帮我们写好了。
redisson
redisson的锁,就实现了可重入了,但是他的源码比较晦涩难懂。
使用起来很简单,因为他们底层都封装好了,你连接上你的Redis客户端,他帮你做了我上面写的一切,然后更完美。
简单看看他的使用吧,跟正常使用Lock没啥区别。
ThreadPoolExecutor threadPoolExecutor =
new ThreadPoolExecutor(inventory, inventory, 10L, SECONDS, linkedBlockingQueue);
long start = System.currentTimeMillis();
Config config = new Config();
config.useSingleServer().setAddress("redis://127.0.0.1:6379");
final RedissonClient client = Redisson.create(config);
final RLock lock = client.getLock("lock1");
for (int i = 0; i <= NUM; i++) {
threadPoolExecutor.execute(new Runnable() {
public void run() {
lock.lock();
inventory--;
System.out.println(inventory);
lock.unlock();
}
});
}
long end = System.currentTimeMillis();
System.out.println("执行线程数:" + NUM + " 总耗时:" + (end - start) + " 库存数为:" + inventory);
上面可以看到我用到了getLock,其实就是获取一个锁的实例。
RedissionLock
也没做啥,就是熟悉的初始化。
public RLock getLock(String name) {
return new RedissonLock(connectionManager.getCommandExecutor(), name);
}
public RedissonLock(CommandAsyncExecutor commandExecutor, String name) {
super(commandExecutor, name);
//命令执行器
this.commandExecutor = commandExecutor;
//UUID字符串
this.id = commandExecutor.getConnectionManager().getId();
//内部锁过期时间
this.internalLockLeaseTime = commandExecutor.
getConnectionManager().getCfg().getLockWatchdogTimeout();
this.entryName = id + ":" + name;
}
加锁
有没有发现很多跟Lock很多相似的地方呢?
尝试加锁,拿到当前线程,然后我开头说的ttl也看到了,是不是一切都是那么熟悉?
public void lockInterruptibly(long leaseTime, TimeUnit unit) throws InterruptedException {
//当前线程ID
long threadId = Thread.currentThread().getId();
//尝试获取锁
Long ttl = tryAcquire(leaseTime, unit, threadId);
// 如果ttl为空,则证明获取锁成功
if (ttl == null) {
return;
}
//如果获取锁失败,则订阅到对应这个锁的channel
RFuture<RedissonLockEntry> future = subscribe(threadId);
commandExecutor.syncSubscription(future);
try {
while (true) {
//再次尝试获取锁
ttl = tryAcquire(leaseTime, unit, threadId);
//ttl为空,说明成功获取锁,返回
if (ttl == null) {
break;
}
//ttl大于0 则等待ttl时间后继续尝试获取
if (ttl >= 0) {
getEntry(threadId).getLatch().tryAcquire(ttl, TimeUnit.MILLISECONDS);
} else {
getEntry(threadId).getLatch().acquire();
}
}
} finally {
//取消对channel的订阅
unsubscribe(future, threadId);
}
//get(lockAsync(leaseTime, unit));
}
获取锁
获取锁的时候,也比较简单,你可以看到,他也是不断刷新过期时间,跟我上面不断去拿当前时间,校验过期是一个道理,只是我比较粗糙。
private <T> RFuture<Long> tryAcquireAsync(long leaseTime, TimeUnit unit, final long threadId) {
//如果带有过期时间,则按照普通方式获取锁
if (leaseTime != -1) {
return tryLockInnerAsync(leaseTime, unit, threadId, RedisCommands.EVAL_LONG);
}
//先按照30秒的过期时间来执行获取锁的方法
RFuture<Long> ttlRemainingFuture = tryLockInnerAsync(
commandExecutor.getConnectionManager().getCfg().getLockWatchdogTimeout(),
TimeUnit.MILLISECONDS, threadId, RedisCommands.EVAL_LONG);
//如果还持有这个锁,则开启定时任务不断刷新该锁的过期时间
ttlRemainingFuture.addListener(new FutureListener<Long>() {
@Override
public void operationComplete(Future<Long> future) throws Exception {
if (!future.isSuccess()) {
return;
}
Long ttlRemaining = future.getNow();
// lock acquired
if (ttlRemaining == null) {
scheduleExpirationRenewal(threadId);
}
}
});
return ttlRemainingFuture;
}
底层加锁逻辑
你可能会想这么多操作,在一起不是原子性不还是有问题么?
大佬们肯定想得到呀,所以还是LUA,他使用了Hash的数据结构。
主要是判断锁是否存在,存在就设置过期时间,如果锁已经存在了,那对比一下线程,线程是一个那就证明可以重入,锁在了,但是不是当前线程,证明别人还没释放,那就把剩余时间返回,加锁失败。
是不是有点绕,多理解一遍。
<T> RFuture<T> tryLockInnerAsync(long leaseTime, TimeUnit unit,
long threadId, RedisStrictCommand<T> command) {
//过期时间
internalLockLeaseTime = unit.toMillis(leaseTime);
return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, command,
//如果锁不存在,则通过hset设置它的值,并设置过期时间
"if (redis.call('exists', KEYS[1]) == 0) then " +
"redis.call('hset', KEYS[1], ARGV[2], 1); " +
"redis.call('pexpire', KEYS[1], ARGV[1]); " +
"return nil; " +
"end; " +
//如果锁已存在,并且锁的是当前线程,则通过hincrby给数值递增1
"if (redis.call('hexists', KEYS[1], ARGV[2]) == 1) then " +
"redis.call('hincrby', KEYS[1], ARGV[2], 1); " +
"redis.call('pexpire', KEYS[1], ARGV[1]); " +
"return nil; " +
"end; " +
//如果锁已存在,但并非本线程,则返回过期时间ttl
"return redis.call('pttl', KEYS[1]);",
Collections.<Object>singletonList(getName()),
internalLockLeaseTime, getLockName(threadId));
}
解锁
锁的释放主要是publish释放锁的信息,然后做校验,一样会判断是否当前线程,成功就释放锁,还有个hincrby递减的操作,锁的值大于0说明是可重入锁,那就刷新过期时间。
如果值小于0了,那删掉Key释放锁。
是不是又和AQS很像了?
AQS就是通过一个volatile修饰status去看锁的状态,也会看数值判断是否是可重入的。
所以我说代码的设计,最后就万剑归一,都是一样的。
public RFuture<Void> unlockAsync(final long threadId) {
final RPromise<Void> result = new RedissonPromise<Void>();
//解锁方法
RFuture<Boolean> future = unlockInnerAsync(threadId);
future.addListener(new FutureListener<Boolean>() {
@Override
public void operationComplete(Future<Boolean> future) throws Exception {
if (!future.isSuccess()) {
cancelExpirationRenewal(threadId);
result.tryFailure(future.cause());
return;
}
//获取返回值
Boolean opStatus = future.getNow();
//如果返回空,则证明解锁的线程和当前锁不是同一个线程,抛出异常
if (opStatus == null) {
IllegalMonitorStateException cause =
new IllegalMonitorStateException("
attempt to unlock lock, not locked by current thread by node id: "
+ id + " thread-id: " + threadId);
result.tryFailure(cause);
return;
}
//解锁成功,取消刷新过期时间的那个定时任务
if (opStatus) {
cancelExpirationRenewal(null);
}
result.trySuccess(null);
}
});
return result;
}
protected RFuture<Boolean> unlockInnerAsync(long threadId) {
return commandExecutor.evalWriteAsync(getName(), LongCodec.INSTANCE, EVAL,
//如果锁已经不存在, 发布锁释放的消息
"if (redis.call('exists', KEYS[1]) == 0) then " +
"redis.call('publish', KEYS[2], ARGV[1]); " +
"return 1; " +
"end;" +
//如果释放锁的线程和已存在锁的线程不是同一个线程,返回null
"if (redis.call('hexists', KEYS[1], ARGV[3]) == 0) then " +
"return nil;" +
"end; " +
//通过hincrby递减1的方式,释放一次锁
//若剩余次数大于0 ,则刷新过期时间
"local counter = redis.call('hincrby', KEYS[1], ARGV[3], -1); " +
"if (counter > 0) then " +
"redis.call('pexpire', KEYS[1], ARGV[2]); " +
"return 0; " +
//否则证明锁已经释放,删除key并发布锁释放的消息
"else " +
"redis.call('del', KEYS[1]); " +
"redis.call('publish', KEYS[2], ARGV[1]); " +
"return 1; "+
"end; " +
"return nil;",
Arrays.<Object>asList(getName(), getChannelName()),
LockPubSub.unlockMessage, internalLockLeaseTime, getLockName(threadId));
}
总结
这个写了比较久,但是不是因为复杂什么的,是因为个人工作的原因,最近事情很多嘛,还是那句话,程序员才是我的本职写文章只是个爱好,不能本末倒置了。
大家会发现,你学懂一个技术栈之后,学新的会很快,而且也能发现他们的设计思想和技巧真的很巧妙,也总能找到相似点,和让你惊叹的点。
就拿Doug Lea
写的AbstractQueuedSynchronizer(AQS)来说,他写了一行代码,你可能看几天才能看懂,大佬们的思想是真的牛。
我看源码有时候也头疼,但是去谷歌一下,自己理解一下,突然恍然大悟的时候觉得一切又很值。
学习就是一条时而郁郁寡欢,时而开环大笑的路,大家加油,我们成长路上一起共勉。
我是敖丙,一个在互联网苟且偷生的工具人。
最好的关系是互相成就,大家的**「三连」**就是丙丙创作的最大动力,我们下期见!
注:如果本篇博客有任何错误和建议,欢迎人才们留言,你快说句话啊!
文章持续更新,可以微信搜索「 三太子敖丙 」第一时间阅读,回复【资料】【面试】【简历】有我准备的一线大厂面试资料和简历模板,本文 GitHub https://github.com/JavaFamily 已经收录,有大厂面试完整考点,欢迎Star。
Redis之分布式锁实现的更多相关文章
- 基于redis 实现分布式锁的方案
在电商项目中,经常有秒杀这样的活动促销,在并发访问下,很容易出现上述问题.如果在库存操作上,加锁就可以避免库存卖超的问题.分布式锁使分布式系统之间同步访问共享资源的一种方式 基于redis实现分布式锁 ...
- 用Redis构建分布式锁-RedLock(真分布)
在不同进程需要互斥地访问共享资源时,分布式锁是一种非常有用的技术手段. 有很多三方库和文章描述如何用Redis实现一个分布式锁管理器,但是这些库实现的方式差别很大,而且很多简单的实现其实只需采用稍微增 ...
- 用Redis实现分布式锁 与 实现任务队列(转)
这一次总结和分享用Redis实现分布式锁 与 实现任务队列 这两大强大的功能.先扯点个人观点,之前我看了一篇博文说博客园的文章大部分都是分享代码,博文里强调说分享思路比分享代码更重要(貌似大概是这个意 ...
- 利用多写Redis实现分布式锁原理与实现分析(转)
利用多写Redis实现分布式锁原理与实现分析 一.关于分布式锁 关于分布式锁,可能绝大部分人都会或多或少涉及到. 我举二个例子:场景一:从前端界面发起一笔支付请求,如果前端没有做防重处理,那么可能 ...
- Redis实现分布式锁
http://redis.io/topics/distlock 在不同进程需要互斥地访问共享资源时,分布式锁是一种非常有用的技术手段. 有很多三方库和文章描述如何用Redis实现一个分布式锁管理器,但 ...
- 基于redis的分布式锁
<?php /** * 基于redis的分布式锁 * * 参考开源代码: * http://nleach.com/post/31299575840/redis-mutex-in-php * * ...
- Redis实现分布式锁与任务队列
Redis实现分布式锁 与 实现任务队列 这一次总结和分享用Redis实现分布式锁 与 实现任务队列 这两大强大的功能.先扯点个人观点,之前我看了一篇博文说博客园的文章大部分都是分享代码,博文里强调说 ...
- 使用Redis实现分布式锁
在天猫.京东.苏宁等等电商网站上有很多秒杀活动,例如在某一个时刻抢购一个原价1999现在秒杀价只要999的手机时,会迎来一个用户请求的高峰期,可能会有几十万几百万的并发量,来抢这个手机,在高并发的情形 ...
- 基于Redis实现分布式锁(1)
转自:http://blog.csdn.net/ugg/article/details/41894947 背景在很多互联网产品应用中,有些场景需要加锁处理,比如:秒杀,全局递增ID,楼层生成等等.大部 ...
- redis咋么实现分布式锁,redis分布式锁的实现方式,redis做分布式锁 积极正义的少年
前言 分布式锁一般有三种实现方式:1. 数据库乐观锁:2. 基于Redis的分布式锁:3. 基于ZooKeeper的分布式锁.本篇博客将介绍第二种方式,基于Redis实现分布式锁.虽然网上已经有各种介 ...
随机推荐
- @vue/cli 4.0.5 学习记录
1. Vue CLI (@vue/cli) 是一个全局安装的 npm 包,提供了终端里的 vue 命令.Vue CLI 插件的名字以 @vue/cli-plugin- (内建插件) 或 vue-cli ...
- STM32F103出现CPU could not be halted问题的解决方案
问题描述: **JLink Warning: CPU could not be halted ***JLink Error: Can not read register 15 (R15) while ...
- ThinkPHP6.0 容器和依赖注入
ThinkPHP6.0 容器和依赖注入 分为如下两部分: 依赖注入 容器 依赖注入 依赖注入其实本质上是指对类的依赖通过构造器完成自动注入: 在控制器架构方法和操作和方法中一旦对参数进行对象类型约束则 ...
- jquery 根据 option 的 text 定位选中 option
$('#test option[text="b"]').attr("selected",true); 上面的方法在 jquery 低于 1.4.2 的版本(含) ...
- Spring注入的对象到底是什么类型
开篇 之前,在用spring编码调试的时候,有时候发现被自动注入的对象是原始类的对象,有时候是代理类的对象,那什么时候注入的原始类对象呢,有什么时候注入的是代理类的对象呢?心里就留下了这个疑问.后来再 ...
- git rebase 还是 merge的使用场景最通俗的解释
什么是 rebase? git rebase 你其实可以把它理解成是“重新设置基线”,将你的当前分支重新设置开始点.这个时候才能知道你当前分支于你需要比较的分支之间的差异. 原理很简单:rebase需 ...
- k3s-安装
k3s介绍 K3S是一个轻量级的K8S集群,它是Rancher Lab开发的一个新的产品, 目的是在资源有限的设备上面跑K8S.它的最大特点就是小,二进制包只有40MB,只需要512MB的内存就能跑起 ...
- Code Your First API With Node.js and Express: Set Up the Server
How to Set Up an Express API Server in Node.js In the previous tutorial, we learned what the REST ar ...
- WordPress 安全配置
关闭后台主题编辑功能 WordPress后台的主题一旦权限开放就可以在后台直接编辑,如果没有开放则只可浏览.主机若有安装suPHP默认就是可以编辑.如果你觉得这项功能用不到,建议您可以关闭它,毕竟直接 ...
- MongoDB -MSC集群的部署
一.Shard节点配置过程 1. 目录创建:mkdir -p /mongodb/38021/conf /mongodb/38021/log /mongodb/38021/datamkdir -p ...