TensorFlow从0到1之TensorFlow多层感知机实现MINIST分类(22)
TensorFlow 支持自动求导,可以使用 TensorFlow 优化器来计算和使用梯度。它使用梯度自动更新用变量定义的张量。本节将使用 TensorFlow 优化器来训练网络。
前面章节中,我们定义了层、权重、损失、梯度以及通过梯度更新权重。用公式实现可以帮助我们更好地理解,但随着网络层数的增加,这可能非常麻烦。
本节将使用 TensorFlow 的一些强大功能,如 Contrib(层)来定义神经网络层及使用 TensorFlow 自带的优化器来计算和使用梯度。
通过前面的学习,我们已经知道如何使用 TensorFlow 的优化器。Contrib 可以用来添加各种层到神经网络模型,如添加构建块。这里使用的一个方法是 tf.contrib.layers.fully_connected,在 TensorFlow 文档中定义如下:
这样就添加了一个全连接层。
提示:上面那段代码创建了一个称为权重的变量,表示全连接的权重矩阵,该矩阵与输入相乘产生隐藏层单元的张量。如果提供了 normalizer_fn(比如batch_norm),那么就会归一化。否则,如果 normalizer_fn 是 None,并且设置了 biases_initializer,则会创建一个偏置变量并将其添加到隐藏层单元中。最后,如果 activation_fn 不是 None,它也会被应用到隐藏层单元。
具体做法
第一步是改变损失函数,尽管对于分类任务,最好使用交叉熵损失函数。这里继续使用均方误差(MSE):
接下来,使用 GradientDescentOptimizer:
对于同一组超参数,只有这两处改变,在测试数据集上的准确率只有 61.3%。增加 max_epoch,可以提高准确性,但不能有效地发挥 TensorFlow 的能力。
这是一个分类问题,所以最好使用交叉熵损失,隐藏层使用 ReLU 激活函数,输出层使用 softmax 函数。做些必要的修改,完整代码如下所示:
解读分析
修改后的 MNIST MLP 分类器在测试数据集上只用了一个隐藏层,并且在 10 个 epoch 内,只需要几行代码,就可以得到 96% 的精度:

由此可见 TensorFlow 的强大之处。
TensorFlow从0到1之TensorFlow多层感知机实现MINIST分类(22)的更多相关文章
- TensorFlow从0到1之TensorFlow多层感知机函数逼近过程(23)
Hornik 等人的工作(http://www.cs.cmu.edu/~bhiksha/courses/deeplearning/Fall.2016/notes/Sonia_Hornik.pdf)证明 ...
- TensorFlow学习笔记7-深度前馈网络(多层感知机)
深度前馈网络(前馈神经网络,多层感知机) 神经网络基本概念 前馈神经网络在模型输出和模型本身之间没有反馈连接;前馈神经网络包含反馈连接时,称为循环神经网络. 前馈神经网络用有向无环图表示. 设三个函数 ...
- TensorFlow从0到1之TensorFlow实现反向传播算法(21)
反向传播(BPN)算法是神经网络中研究最多.使用最多的算法之一,它用于将输出层中的误差传播到隐藏层的神经元,然后用于更新权重. 学习 BPN 算法可以分成以下两个过程: 正向传播:输入被馈送到网络,信 ...
- TensorFlow从0到1之浅谈感知机与神经网络(18)
最近十年以来,神经网络一直处于机器学习研究和应用的前沿.深度神经网络(DNN).迁移学习以及计算高效的图形处理器(GPU)的普及使得图像识别.语音识别甚至文本生成领域取得了重大进展. 神经网络受人类大 ...
- TensorFlow从0到1之TensorFlow优化器(13)
高中数学学过,函数在一阶导数为零的地方达到其最大值和最小值.梯度下降算法基于相同的原理,即调整系数(权重和偏置)使损失函数的梯度下降. 在回归中,使用梯度下降来优化损失函数并获得系数.本节将介绍如何使 ...
- TensorFlow从0到1之TensorFlow常用激活函数(19)
每个神经元都必须有激活函数.它们为神经元提供了模拟复杂非线性数据集所必需的非线性特性.该函数取所有输入的加权和,进而生成一个输出信号.你可以把它看作输入和输出之间的转换.使用适当的激活函数,可以将输出 ...
- TensorFlow从0到1之TensorFlow Keras及其用法(25)
Keras 是与 TensorFlow 一起使用的更高级别的作为后端的 API.添加层就像添加一行代码一样简单.在模型架构之后,使用一行代码,你可以编译和拟合模型.之后,它可以用于预测.变量声明.占位 ...
- TensorFlow从0到1之TensorFlow逻辑回归处理MNIST数据集(17)
本节基于回归学习对 MNIST 数据集进行处理,但将添加一些 TensorBoard 总结以便更好地理解 MNIST 数据集. MNIST由https://www.tensorflow.org/get ...
- TensorFlow从0到1之TensorFlow csv文件读取数据(14)
大多数人了解 Pandas 及其在处理大数据文件方面的实用性.TensorFlow 提供了读取这种文件的方法. 前面章节中,介绍了如何在 TensorFlow 中读取文件,本节将重点介绍如何从 CSV ...
随机推荐
- iOS [AFHTTPSessionManager GET:parameters:progress:success:failure:]: unrecognized selector sent to
AFN更新到4.0.1后,崩溃[AFHTTPSessionManager GET:parameters:progress:success:failure:]: unrecognized selecto ...
- SQL——处理列中NULL值
处理NULL值 - 数据库中某列为NULL值,使用函数在列值为NULL时返回固定值. SQLServer:ISNULL(col,value) 示例:SELECT ISNULL(co ...
- 监控-zabbix
1:什么是监控? 监控:安防的监控 看监控,事后追责 linux监控: 事前预警,数据分析 2:常见的linux监控命令 cpu 1 top 2 htop 3 uptime ...
- JVM调优总结(四)-分代垃圾回收详述
为什么要分代 分代的垃圾回收策略,是基于这样一个事实:不同的对象的生命周期是不一样的.因此,不同生命周期的对象可以采取不同的收集方式,以便提高回收效率. 在Java程序运行的过程中,会产生大量的对象, ...
- redis 缓存穿透,缓存雪崩,缓存击穿
1.缓存穿透:缓存穿透是指查询一个不存在的数据,由于缓存是不命中,将去查询数据库,但是数据库也无此记录,这将导致这个不存在的数据每次请求都要到存储层去查询,失去了缓存的意义.在流量大时,可能DB就挂掉 ...
- PYTHON 黑帽子第二章总结
基于python3编写 import sys, socket, getopt, threading, argparse, subprocess # globals options listen = F ...
- RabbitMQ--其他几种模式
本文是作者原创,版权归作者所有.若要转载,请注明出处. 本文RabbitMQ版本为rabbitmq-server-3.7.17,erlang为erlang-22.0.7.请各位去官网查看版本匹配和下载 ...
- Rocket - debug - DebugCustomXbar
https://mp.weixin.qq.com/s/7h9Bdb0x4_clyigMU_0B7Q 讨论DebugCustomXbar中的几个问题. 1. sources/sourceParams n ...
- Rocket - debug - Example: Accessing Registers Using Abstract Command
https://mp.weixin.qq.com/s/RdJzE06mMkh2x__vVj_fEA 介绍riscv debug接口的使用实例:使用抽象命令读取寄存器. 1. Read s0 using ...
- Chisel3 - bind - Data
https://mp.weixin.qq.com/s/ENJVkz88sGgyODRNCu9jhQ 介绍Data类中的binding的定义和用法. Binding stores informa ...