@description@

给定一个 N*M 的方格图,某人从 (0, 0) 出发想要走到 (goalX, goalY)。

假如该人在 (x, y),他会等概率地走向 ((x + 1) mod N, y) 或 (x, (y + 1) mod M)。

求到达终点的期望步数。

原题链接。

@solution@

显然可以列出期望的 dp 方程 dp[x][y] = (dp[(x+1) mod N][y] + dp[x][(y+1) mod M])/2 + 1。

发现要用高斯消元,而普通的高斯消元 O(N^6) 的复杂度太高,无法通过。

注意到我们可以先人工合并一些方程。

具体操作是,保留一些量作为高斯消元的变量(此处我们选择与 (goalX, goalY) 同行与同列的量),将其视作常量。

然后利用转移图的特殊性质(此处转移图是个网格图),将其他量用这些量表示出来。

我们可以从 (goalX - 1, goalY - 1) 从下往上,自右往左依次得到其他量用这些量表示出来的结果。

这一部分的复杂度是 O(N^3),之后的高斯消元复杂度也为 O(N^3),我们就可以通过该题了。

@accepted code@

#include <cmath>
#include <cstdio>
#include <algorithm>
using namespace std; class TorusSailing{
private:
#define MAXN (200)
struct node{
double a[MAXN], b; int cnt;
node() {}
node(int n) {
cnt = n, b = 0;
for(int i=0;i<n;i++)
a[i] = 0;
}
friend node operator + (const node &x, const node &y) {
node z(x.cnt); z.b = x.b + y.b;
for(int i=0;i<x.cnt;i++) z.a[i] = x.a[i] + y.a[i];
return z;
}
friend node operator + (const node &x, const double &k) {
node z = x; z.b += k;
return z;
}
friend node operator / (const node &x, const double &k) {
node z(x.cnt); z.b = x.b / k;
for(int i=0;i<x.cnt;i++) z.a[i] = x.a[i]/k;
return z;
}
}a[MAXN][MAXN]; double A[MAXN][MAXN];
void gauss(int n, int m) {
int r = 0, c = 0;
while( r < n && c < m ) {
int mxr = r;
for(int i=r+1;i<n;i++)
if( fabs(A[i][c]) >= fabs(A[mxr][c]) )
mxr = i;
if( r != mxr ) {
for(int j=c;j<m;j++)
swap(A[r][j], A[mxr][j]);
}
if( A[r][c] ) {
double k = A[r][c];
for(int j=c;j<m;j++)
A[r][j] /= k;
for(int i=0;i<n;i++) {
if( i == r ) continue;
k = A[i][c];
for(int j=c;j<m;j++)
A[i][j] -= k*A[r][j];
}
r++;
}
c++;
}
}
public:
double expectedTime(int N, int M, int goalX, int goalY) {
int K = (N - 1) + (M - 1);
for(int i=0;i<N-1;i++)
a[i][M-1] = node(K), a[i][M-1].a[i] = 1;
for(int j=0;j<M-1;j++)
a[N-1][j] = node(K), a[N-1][j].a[j+N-1] = 1;
a[N-1][M-1] = node(K);
for(int j=M-2;j>=0;j--)
for(int i=N-2;i>=0;i--)
a[i][j] = (a[i+1][j] + a[i][j+1]) / 2 + 1;
for(int i=0;i<N-1;i++) {
node b = (a[i][0] + a[i+1][M-1]) / 2 + 1;
for(int j=0;j<K;j++) A[i][j] = -b.a[j];
A[i][i]++, A[i][K] = b.b;
}
for(int j=0;j<M-1;j++) {
node b = (a[0][j] + a[N-1][j+1]) / 2 + 1;
for(int i=0;i<K;i++) A[j+N-1][i] = -b.a[i];
A[j+N-1][j+N-1]++, A[j+N-1][K] = b.b;
}
gauss(K, K + 1);
int sx = N - goalX - 1, sy = M - goalY - 1;
double ans = a[sx][sy].b;
for(int i=0;i<a[sx][sy].cnt;i++)
ans += a[sx][sy].a[i] * A[i][K];
return ans;
}
};

@details@

事实上,这道题感觉和 PKUWC2018 那道高消的优化思路有点类似(用合并方程的思想逐渐把未知量消掉)。。。

不过也可能是我联想能力太强。。。

@topcoder - SRM614D1L3@ TorusSailing的更多相关文章

  1. TopCoder kawigiEdit插件配置

    kawigiEdit插件可以提高 TopCoder编译,提交效率,可以管理保存每次SRM的代码. kawigiEdit下载地址:http://code.google.com/p/kawigiedit/ ...

  2. 记第一次TopCoder, 练习SRM 583 div2 250

    今天第一次做topcoder,没有比赛,所以找的最新一期的SRM练习,做了第一道题. 题目大意是说 给一个数字字符串,任意交换两位,使数字变为最小,不能有前导0. 看到题目以后,先想到的找规律,发现要 ...

  3. TopCoder比赛总结表

    TopCoder                        250                              500                                 ...

  4. Topcoder几例C++字符串应用

    本文写于9月初,是利用Topcoder准备应聘时的机试环节临时补习的C++的一部分内容.签约之后,没有再进行练习,此文暂告一段落. 换句话说,就是本文太监了,一直做草稿看着别扭,删掉又觉得可惜,索性发 ...

  5. TopCoder

    在TopCoder下载好luncher,网址:https://www.topcoder.com/community/competitive%20programming/ 选择launch web ar ...

  6. TopCoder SRM 596 DIV 1 250

    body { font-family: Monospaced; font-size: 12pt } pre { font-family: Monospaced; font-size: 12pt } P ...

  7. 求拓扑排序的数量,例题 topcoder srm 654 div2 500

    周赛时遇到的一道比较有意思的题目: Problem Statement      There are N rooms in Maki's new house. The rooms are number ...

  8. TopCoder SRM 590

     第一次做TC,不太习惯,各种调试,只做了一题...... Problem Statement     Fox Ciel is going to play Gomoku with her friend ...

  9. Topcoder Arena插件配置和训练指南

    一. Arena插件配置 1. 下载Arena 指针:http://community.topcoder.com/tc?module=MyHome 左边Competitions->Algorit ...

随机推荐

  1. AVL树的创建--C语言实现

    AVL树是一种自平衡(Self-balancing)二叉查找树(Binary Search Tree),要求任何一个节点的左子树和右子树的高度之差不能超过1. AVL树的插入操作首先会按照普通二叉查找 ...

  2. 浙工大新生赛莫队处理+区间DP+KMP+分析题

    题目描述 读入一个长度为n的整数数列a1,a2,…,an,以及一个整数K. q组询问. 每组询问包含一个二元组(l, r), 其中1≤l≤r≤ n, 求所有满足以下条件的二元组(l2, r2)的数目: ...

  3. Keyboard Shortcuts Reference

    Sublime Text 3快捷键 Ctrl + Shift + P 打开命令面板 Ctrl + P 搜索项目中的文件 Ctrl + G 跳到第几行 Ctrl + W 关闭当前打开文件 Ctrl + ...

  4. 写一个LRU算法的记录

    今天简单记录一下,利用Scala解答的一道LRU题目,原题为LeetCode的第146题,是一道设计LRU的题目. 题目详情 运用你所掌握的数据结构,设计和实现一个  LRU (最近最少使用) 缓存机 ...

  5. 【JUC】CountDownLatch和Java枚举的使用例子

    public enum CountryEnum { ONE(1,"春"), TWO(2,"夏"), THREE(3,"秋"), FOUR(4 ...

  6. Java四种访问修饰符

    Java 四种访问权限 一.概述 访问等级比较:public > protected > default > private 无论是方法还是成员变量,这四种访问权限修饰符作用都一样 ...

  7. httpclient介绍与请求方式详解

    httpClient工具介绍 HTTP协议可能是现在lntemet上使用得最多.最重要的协议了,越来越多的Java应用程序需要直接通过HTTP协议来访问网络资源.虽然在JDK的java.net包中已经 ...

  8. golang垃圾回收机制

    golang的GC,1.8通过混合写⼊屏障, 使得STW降到了sub ms.go语言中程序代码执行和垃圾回收是并发执行的. 当前Go GC特征 :三色标记,并发标记和清扫,非分代,非紧缩,混合写屏障. ...

  9. 【C++】变量

    注意:以下内容摘自文献[1],修改了部分内容. 1.变量:在程序运行期间其值可以改变的量称为变量.一个变量应该有一个名字,并在内存中占据一定的存储单元,在该存储单元中存放变量的值.变量名代表内存中的一 ...

  10. [JavaWeb基础] 009.Struts2 上传文件

    在web开发中,我们经常遇到要把文件上传下载的功能,这篇文章旨在指导大家完成文件上传功能 1.首先我们需要一个上传文件的页面. <!--在进行文件上传时,表单提交方式一定要是post的方式, 因 ...