Multi-GPU processing with data parallelism

If you write your software in a language like C++ for a single cpu core, making it run on multiple GPUs in parallel would require rewriting the software from scratch. But this is not the case with TensorFlow. Because of its symbolic nature, tensorflow can hide all that complexity, making it effortless to scale your program across many CPUs and GPUs.

Let’s start with the simple example of adding two vectors on CPU:

 import tensorflow as tf

with tf.device(tf.DeviceSpec(device_type='CPU', device_index=0)):
a = tf.random_uniform([1000, 100])
b = tf.random_uniform([1000, 100])
c = a + b tf.Session().run(c)

The same thing can as simply be done on GPU:

with tf.device(tf.DeviceSpec(device_type='GPU', device_index=0)):
a = tf.random_uniform([1000, 100])
b = tf.random_uniform([1000, 100])
c = a + b
``` But what if we have two GPUs and want to utilize both? To do that, we can split the data and use a separate GPU for processing each half:
```python
split_a = tf.split(a, 2)
split_b = tf.split(b, 2) split_c = []
for i in range(2):
with tf.device(tf.DeviceSpec(device_type='GPU', device_index=i)):
split_c.append(split_a[i] + split_b[i]) c = tf.concat(split_c, axis=0)
``` Let's rewrite this in a more general form so that we can replace addition with any other set of operations: <div class="se-preview-section-delimiter"></div> ```python
def make_parallel(fn, num_gpus, **kwargs):
in_splits = {}
for k, v in kwargs.items():
in_splits[k] = tf.split(v, num_gpus) out_split = []
for i in range(num_gpus):
with tf.device(tf.DeviceSpec(device_type='GPU', device_index=i)):
with tf.variable_scope(tf.get_variable_scope(), reuse=i > 0):
out_split.append(fn(**{k : v[i] for k, v in in_splits.items()})) return tf.concat(out_split, axis=0) def model(a, b):
return a + b c = make_parallel(model, 2, a=a, b=b)

You can replace the model with any function that takes a set of tensors as input and returns a tensor as result with the condition that both the input and output are in batch. Note that we also added a variable scope and set the reuse to true. This makes sure that we use the same variables for processing both splits. This is something that will become handy in our next example.

Let’s look at a slightly more practical example. We want to train a neural network on multiple GPUs. During training we not only need to compute the forward pass but also need to compute the backward pass (the gradients). But how can we parallelize the gradient computation? This turns out to be pretty easy.

Recall from the first item that we wanted to fit a second degree polynomial to a set of samples. We reorganized the code a bit to have the bulk of the operations in the model function:

import numpy as np
import tensorflow as tf def model(x, y):
w = tf.get_variable("w", shape=[3, 1]) f = tf.stack([tf.square(x), x, tf.ones_like(x)], 1)
yhat = tf.squeeze(tf.matmul(f, w), 1) loss = tf.square(yhat - y)
return loss x = tf.placeholder(tf.float32)
y = tf.placeholder(tf.float32) loss = model(x, y) train_op = tf.train.AdamOptimizer(0.1).minimize(
tf.reduce_mean(loss)) def generate_data():
x_val = np.random.uniform(-10.0, 10.0, size=100)
y_val = 5 * np.square(x_val) + 3
return x_val, y_val sess = tf.Session()
sess.run(tf.global_variables_initializer())
for _ in range(1000):
x_val, y_val = generate_data()
_, loss_val = sess.run([train_op, loss], {x: x_val, y: y_val}) _, loss_val = sess.run([train_op, loss], {x: x_val, y: y_val})
print(sess.run(tf.contrib.framework.get_variables_by_name("w")))

Now let’s use make_parallel that we just wrote to parallelize this. We only need to change two lines of code from the above code:

loss = make_parallel(model, 2, x=x, y=y)

train_op = tf.train.AdamOptimizer(0.1).minimize(
tf.reduce_mean(loss),
colocate_gradients_with_ops=True)

The only thing that we need to change to parallelize backpropagation of gradients is to set the colocate_gradients_with_ops flag to true. This ensures that gradient ops run on the same device as the original op.

更多教程:http://www.tensorflownews.com/

TensorFlow 多 GPU 处理并行数据的更多相关文章

  1. Setup Tensorflow with GPU on Mac OSX 10.11

    Setup Tensorflow with GPU on OSX 10.11 环境描述 电脑:MacBook Pro 15.6 CPU: 2.7GHz 显卡: GT 650m 系统:OSX 10.11 ...

  2. linux 安装tensorflow(gpu版本)

    一.安装cuda 具体安装过程见我的另一篇博客,ubuntu16.04下安装配置深度学习环境 二.安装tensorflow 1.具体安装过程官网其实写的比较详细,总结一下的话可以分为两种:安装rele ...

  3. Tensorflow检验GPU是否安装成功 及 使用GPU训练注意事项

    1. 已经安装cuda但是tensorflow仍然使用cpu加速的问题 电脑上同时安装了GPU和CPU版本的TensorFlow,本来想用下面代码测试一下GPU程序,但无奈老是没有调用GPU. imp ...

  4. Ubuntu16.04下安装tensorflow(GPU加速)【转】

    本文转载自:https://blog.csdn.net/qq_30520759/article/details/78947034 版权声明:本文为博主原创文章,未经博主允许不得转载. https:// ...

  5. tensorflow 安装GPU版本,个人总结,步骤比较详细【转】

    本文转载自:https://blog.csdn.net/gangeqian2/article/details/79358543 手把手教你windows安装tensorflow的教程参考另一篇博文ht ...

  6. Google TensorFlow for GPU安装、配置大坑

    Google TensorFlow for GPU安装.配置大坑 从本周一开始(12.05),共4天半的时间,终于折腾好Google TensorFlow for GPU版本,其间跳坑无数,摔得遍体鳞 ...

  7. Win10 TensorFlow(gpu)安装详解

    Win10 TensorFlow(gpu)安装详解 写在前面:TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tensor(张量)意味着 ...

  8. [开发技巧]·TensorFlow&Keras GPU使用技巧

    [开发技巧]·TensorFlow&Keras GPU使用技巧 ​ 1.问题描述 在使用TensorFlow&Keras通过GPU进行加速训练时,有时在训练一个任务的时候需要去测试结果 ...

  9. tensorflow with gpu 环境配置

    1.准备工作 1.1 确保GPU驱动已经安装 lspci | grep -i nvidia 通过此命令可以查看GPU信息,测试机已经安装GPU驱动

随机推荐

  1. C++中cin的输入分隔符问题及相关

    1.C/C++中的类型转换函数(区分类中的类型转换构造函数): 头文件:C中stdlib.h C++中cstdlib atof(将字符串转换成浮点型数) atoi(将字符串转换成整型数) atol(将 ...

  2. Samtec与Neoconix达成合作并和II-VI推出新产品

    序言:Samtec近日动作不断, 近日Samtec与Neoconix达成合作并和II-VI推出新产品,以下是详细内容. Samtec与Neoconix签订Neoconix PCBeam 技术授权协议, ...

  3. Manjaro 19.01 kde下Tim sogou软件安装问题及解决

    我的系统配置 首先第一个问题是,在manjaro下Tim Thunderspeed这种deepin-wine的软件.今天我在装这些软件的时候,安装之后不能打开,闪退.苦恼了我好一会儿.终于找到了解决的 ...

  4. Java框架之SpringBoot-Web构建-yml-模块-注解

    SpringBoot Spring Boot是一站式整合所有应用框架的框架,简化Spring应用开发,约定大于配置,去繁从简,开箱即用,准生产环境的运行时应用监控框架 快速构建 SpringBoot ...

  5. c语言之单向链表

    0x00 什么是链表 链表可以说是一种最为基础的数据结构了,而单向链表更是基础中的基础.链表是由一组元素以特定的顺序组合或链接在一起的,不同元素之间在逻辑上相邻,但是在物理上并不一定相邻.在维护一组数 ...

  6. spring——AOP原理及源码(三)

    在上一篇中,我们创建并在BeanFactory中注册了AnnotationAwareAspectJAutoProxyCreator组件.本篇我们将要探究,这个组件是在哪里以及何时发挥作用的. 调试的起 ...

  7. 手写node可读流之流动模式

    node的可读流基于事件 可读流之流动模式,这种流动模式会有一个"开关",每次当"开关"开启的时候,流动模式起作用,如果将这个"开关"设置成 ...

  8. element ui table render-header自定义表头信息使用

    在使用vue自定义组件内容过程之中,我们绝大多数情况下都是通过预先写好不同的html模板,再通过props传入不同的值来渲染不同的模板.例如我们需要实现一个<v-title size='1'&g ...

  9. json 的基础入门

    JSON是什么: JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式.在初始的项目开发中人们更倾向于使用xml来进行数据的传输,但当JSON出现后,开发者更倾 ...

  10. JAVA多线程面试必看(转载)

    JAVA多线程和并发基础面试问答 原文链接:http://ifeve.com/java-multi-threading-concurrency-interview-questions-with-ans ...