这俩题太像了

bzoj 3450 Tyvj1952 Easy

Description

某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(

我们来简化一下这个游戏的规则

有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连续a个comb就有aa分,comb就是极大的连续o。

比如ooxxxxooooxxx,分数就是2
2+4*4=4+16=20。

Sevenkplus闲的慌就看他打了一盘,有些地方跟运气无关要么是o要么是x,有些地方o或者x各有50%的可能性,用?号来表示。

比如oo?xx就是一个可能的输入。

那么WJMZBMR这场osu的期望得分是多少呢?

比如oo?xx的话,?是o的话就是oooxx => 9,是x的话就是ooxxx => 4

期望自然就是(4+9)/2 =6.5了

Input

第一行一个整数n,表示点击的个数

接下来一个字符串,每个字符都是ox?中的一个

Output

一行一个浮点数表示答案

\(n\leq 300000\)


一开始想对每一块连续的确定的\(o\)来维护,但显然不行

由于答案是长度的平方,所以可以先维护一个期望长度

\(len_i\)表示以\(i\)结尾的期望长度

你显然,如果当前是\(o,len_i=len_{i-1}+1\),当前为\(x,len_i=0\)

如果是不确定,又因为概率是二分之一,那期望就是上面两种情况加起来除以二,\(len_i=\dfrac{len_{i-1}+1}{2}\)

然后很容易观察到的是\((x+1)^2=x^2+2x+1\)

所以可以由这个式子从长度推到答案

设\(f_i\)为\(1\)到\(i\)位答案的期望,这里和刚才\(len\)不同

还是分三种情况讨论

已经确定的两种情况都很简单,是\(o\)就\(f_i=f_{i-1}+2len_{i-1}+1\),是\(x\)就\(f_i=f_{i-1}\)

因为这里是统计的\(1\)到\(i\)的期望答案,所以也要把前面的期望累加上

如果不确定,就是\(f_i\)有一半的几率能加上\(2len_{i-1}+1\),所以\(f_o=f_{i-1}+\dfrac{2len_{i-1}+1}{2}\)

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#define reg register
#define EN std::puts("")
#define LL long long
inline int read(){
int x=0,y=1;
char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
int n;
char s[300006];
double len[300006],f[300006];//len是以i结尾的期望长度
int main(){
n=read();
std::scanf("%s",s+1);
for(reg int i=1;i<=n;i++){
if(s[i]=='o'){
len[i]=len[i-1]+1;
f[i]=len[i-1]*2+1+f[i-1];
}
else if(s[i]=='x'){
len[i]=0;f[i]=f[i-1];
}
else{
len[i]=(len[i-1]+1)/2;
f[i]=(len[i-1]*2+1)/2+f[i-1];
}
}
std::printf("%.4lf",f[n]);
return 0;
}

bzoj4318 OSU!

这个就是前面那个的升级版

Description

osu 是一款群众喜闻乐见的休闲软件。

我们可以把osu的规则简化与改编成以下的样子:

一共有n次操作,每次操作只有成功与失败之分,成功对应1,失败对应0,n次操作对应为1个长度为n的01串。在这个串中连续的 X个1可以贡献X^3 的分数,这x个1不能被其他连续的1所包含(也就是极长的一串1,具体见样例解释)

现在给出n,以及每个操作的成功率,请你输出期望分数,输出四舍五入后保留1位小数。

Input

第一行有一个正整数n,表示操作个数。接下去n行每行有一个[0,1]之间的实数,表示每个操作的成功率。

Output

只有一个实数,表示答案。答案四舍五入后保留1位小数。

\(n\leq 100000\)


还是用之前的思路,维护一个长度

但是这次转移就是\(len_i=(len_{i-1}+1)\cdot p\)了,因为它有\(p\)的概率能加一,而剩下\(1-p\)的几率变成0

由于\((x+1)^3=x^3+3x^2+3x+1\),所以还要再维护一个长度平方的期望才能得到答案

因为期望的平方不一定等于平方的期望,这是看了别人blog才知道的,并不会证

长度平方的期望和刚才差不多,但并不完全一样,这只算上以\(i\)结尾的长度的平方

算答案就照搬这个式子然后乘上\(p\)就行

#include<cstdio>
#include<algorithm>
#include<iostream>
#include<cmath>
#include<iomanip>
#include<cstring>
#define reg register
#define EN std::puts("")
#define LL long long
inline int read(){
int x=0,y=1;
char c=std::getchar();
while(c<'0'||c>'9'){if(c=='-') y=0;c=std::getchar();}
while(c>='0'&&c<='9'){x=x*10+(c^48);c=std::getchar();}
return y?x:-x;
}
int n;
double f[100006],sqr[100006],len[100006];
int main(){
n=read();
reg double p;
for(reg int i=1;i<=n;i++){
std::scanf("%lf",&p);
len[i]=(len[i-1]+1)*p;
sqr[i]=(sqr[i-1]+len[i-1]*2+1)*p;
f[i]=f[i-1]+(3*sqr[i-1]+3*len[i-1]+1)*p;
}
// for(reg int i=1;i<=n;i++) std::printf("%.3lf %.3lf %.3lf\n",len[i],sqr[i],f[i]);
std::printf("%.1lf",f[n]);
return 0;
}

其实这两段代码中的数组是可以省掉的,只记录一个之前以为的信息

bzoj4318 OSU!和bzoj 3450 Tyvj1952 Easy的更多相关文章

  1. Bzoj 3450: Tyvj1952 Easy (期望)

    Bzoj 3450: Tyvj1952 Easy 这里放上题面,毕竟是个权限题(洛谷貌似有题,忘记叫什么了) Time Limit: 10 Sec Memory Limit: 128 MB Submi ...

  2. Bzoj 3450: Tyvj1952 Easy 期望/概率,动态规划

    3450: Tyvj1952 Easy Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 431  Solved: 325[Submit][Status] ...

  3. bzoj 3450 Tyvj1952 Easy (概率dp)

    3450: Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是o,失败 ...

  4. 【概率】BZOJ 3450:Tyvj1952 Easy

    Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连 ...

  5. bzoj 3450: Tyvj1952 Easy

    Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 411  Solved: 309[Submit][Status][Discuss] Descriptio ...

  6. BZOJ 3450 Tyvj1952 Easy(期望)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3450 [题目大意] 给出一个字符串,包含o,x和?,一个字符串的得分为 每段连续的o的 ...

  7. BZOJ 3450: Tyvj1952 Easy 数学期望

    Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) ...

  8. BZOJ 3450: Tyvj1952 Easy [DP 概率]

    传送门 题意:$ox?$组成的序列,$?$等概率为$o\ or\ x$,得分为连续的$o$的长度的平方和,求期望得分 一开始没想出来,原因在于不知道如何记录长度 其实我们同时求得分和长度的期望就好了 ...

  9. BZOJ 3450 Tyvj1952 Easy ——期望DP

    维护$x$和$x^2$的期望递推即可 #include <map> #include <ctime> #include <cmath> #include <q ...

随机推荐

  1. wireshark抓包实战(一),抓包原理

    一.什么样的"包"能被wireshark抓住呢? 1.本机 即直接抓取进出本机网卡的流量包.这种情况下,wireshark会绑定本机的一块网卡. 2.集线器 用于抓取流量泛洪,冲突 ...

  2. MySQL学习之路2-数据库and数据表的基本操作

    数据库基本操作 查看.选择数据库: show databases; use <databasename>; 创建数据库:create database <dbname> cha ...

  3. spring jar 包 用处功能:

    自己积累的: @   spring-context-3.0.5.RELEASE.jar :主要用于 spring程序中加载类 ApplicationContext 用.eq: ApplicationC ...

  4. AJ学IOS(23)UI之控制器管理

    AJ分享,必须精品 控制器以及view的多种创建方式 控制器view的加载 通过storyboard创建 1:先加载storyboard⽂件(Test是storyboard的⽂文件名) UIStory ...

  5. Git应用详解第十讲:Git子库:submodule与subtree.md

    前言 前情提要:Git应用详解第九讲:Git cherry-pick与Git rebase 一个中大型项目往往会依赖几个模块,git提供了子库的概念.可以将这些子模块存放在不同的仓库中,通过submo ...

  6. Git敏捷开发--stash命令

    save 执行git stash,默认以commit info保存当前的stash信息 当在某个commit下,执行多次stash时,无法友好地区分每个stash的改动.save 命令可以清晰地标识每 ...

  7. Python - 批量获取文件夹的大小输出为文件格式化保存

    很多时候,查看一个文件夹下的每个文件大小可以轻易的做到,因为文件后面就是文件尺寸,但是如果需要查看一个文件夹下面所有的文件夹对应的尺寸,就发现需要把鼠标放到对应的文件夹上,稍等片刻才会出结果. 有时候 ...

  8. 文本文件的合并操作方法 - Python

    我们有时候,看到几k的日志文件,一大堆,一个一个打开又很麻烦,少看几个,又担心遗漏,这个时候,如果有一个可以合并所有文本文件的工具就好了. 下面这个代码就可以实现,它不局限于.txt格式,基本上字符型 ...

  9. Java SE —— 专栏总集篇

    前言: Java 语言,是相对于其他语言而言,门槛低,而且功能还强大的一门编程语言,本人十分看好这一门语言,但是,它也是有深度的,看过本人的<数据结构与算法>专栏的同学们有福了,因为本人在 ...

  10. 零基础的学习者应该怎么开始学习呢?Python核心知识学习思维分享

    近几年,Python一路高歌猛进,成为最受欢迎的编程语言之一,受到无数编程工作者的青睐. 据悉,Python已经入驻部分小学生教材,可以预见学习Python将成为一项提高自身职业竞争力的必修课.那么零 ...