原理:
           PSO(粒子群群算法):可以在全局范围内进行大致搜索,得到一个初始解,以便BP接力
           BP(神经网络):梯度搜素,细化能力强,可以进行更仔细的搜索。
数据:对该函数((2.1*(1-x+2*x.^2).*exp(-x.^2/2))+sin(x)+x','x')[-5,5]进行采样,得到30组训练数据,拟合该网络。

     神经网络结构设置:   该网络结构为,1-7-1结构,即输入1个神经元,中间神经元7个,输出1个神经元

程序步骤:

第一步:先采用抽取30组数据,包括输入和输出

第一步:运行粒子群算法,进行随机搜索,选择一个最优的解,该解的维数为22维。

第二步:在;粒子群的解基础上进行细化搜索

程序代码:

clc
clear
tic
SamNum=30; HiddenNum=7;
InDim=1;
OutDim=1; load train_x
load train_f a=train_x';
d=train_f'; p=[a];
t=[d];
[SamIn,minp,maxp,tn,mint,maxt]=premnmx(p,t); NoiseVar=0.01;
Noise=NoiseVar*randn(1,SamNum);
SamOut=tn + Noise; SamIn=SamIn';
SamOut=SamOut'; MaxEpochs=60000;
lr=0.025;
E0=0.65*10^(-6); %%
%the begin of PSO E0=0.001;
Max_num=500;
particlesize=200;
c1=1;
c2=1;
w=2;
vc=2;
vmax=5;
dims=InDim*HiddenNum+HiddenNum+HiddenNum*OutDim+OutDim;
x=-4+7*rand(particlesize,dims);
v=-4+5*rand(particlesize,dims);
f=zeros(particlesize,1);
%%
for jjj=1:particlesize
trans_x=x(jjj,:);
W1=zeros(InDim,HiddenNum);
B1=zeros(HiddenNum,1);
W2=zeros(HiddenNum,OutDim);
B2=zeros(OutDim,1); W1=trans_x(1,1:HiddenNum);
B1=trans_x(1,HiddenNum+1:2*HiddenNum)';
W2=trans_x(1,2*HiddenNum+1:3*HiddenNum)';
B2=trans_x(1,3*HiddenNum+1);
Hiddenout=logsig(SamIn*W1+repmat(B1',SamNum,1));
Networkout=Hiddenout*W2+repmat(B2',SamNum,1);
Error=Networkout-SamOut;
SSE=sumsqr(Error) f(jjj)=SSE;
end
personalbest_x=x;
personalbest_f=f;
[groupbest_f i]=min(personalbest_f);
groupbest_x=x(i,:);
for j_Num=1:Max_num
vc=(5/3*Max_num-j_Num)/Max_num;
%%
v=w*v+c1*rand*(personalbest_x-x)+c2*rand*(repmat(groupbest_x,particlesize,1)-x);
for kk=1:particlesize
for kk0=1:dims
if v(kk,kk0)>vmax
v(kk,kk0)=vmax;
else if v(kk,kk0)<-vmax
v(kk,kk0)=-vmax;
end
end
end
end
x=x+vc*v;
%%
for jjj=1:particlesize
trans_x=x(jjj,:);
W1=zeros(InDim,HiddenNum);
B1=zeros(HiddenNum,1);
W2=zeros(HiddenNum,OutDim);
B2=zeros(OutDim,1); W1=trans_x(1,1:HiddenNum);
B1=trans_x(1,HiddenNum+1:2*HiddenNum)';
W2=trans_x(1,2*HiddenNum+1:3*HiddenNum)';
B2=trans_x(1,3*HiddenNum+1);
Hiddenout=logsig(SamIn*W1+repmat(B1',SamNum,1));
Networkout=Hiddenout*W2+repmat(B2',SamNum,1);
Error=Networkout-SamOut;
SSE=sumsqr(Error); f(jjj)=SSE; end
%%
for kk=1:particlesize
if f(kk)<personalbest_f(kk)
personalbest_f(kk)=f(kk);
personalbest_x(kk)=x(kk);
end
end
[groupbest_f0 i]=min(personalbest_f); if groupbest_f0<groupbest_f
groupbest_x=x(i,:);
groupbest_f=groupbest_f0;
end
ddd(j_Num)=groupbest_f
end
str=num2str(groupbest_f);
trans_x=groupbest_x;
W1=trans_x(1,1:HiddenNum);
B1=trans_x(1,HiddenNum+1:2*HiddenNum)';
W2=trans_x(1,2*HiddenNum+1:3*HiddenNum)';
B2=trans_x(1,3*HiddenNum+1);
%the end of PSO
%% for i=1:MaxEpochs
%%
Hiddenout=logsig(SamIn*W1+repmat(B1',SamNum,1));
Networkout=Hiddenout*W2+repmat(B2',SamNum,1);
Error=Networkout-SamOut;
SSE=sumsqr(Error) ErrHistory=[ SSE]; if SSE<E0,break, end
dB2=zeros(OutDim,1);
dW2=zeros(HiddenNum,OutDim);
for jj=1:HiddenNum
for k=1:SamNum
dW2(jj,OutDim)=dW2(jj,OutDim)+Error(k)*Hiddenout(k,jj);
end
end
for k=1:SamNum
dB2(OutDim,1)=dB2(OutDim,1)+Error(k);
end
dW1=zeros(InDim,HiddenNum);
dB1=zeros(HiddenNum,1);
for ii=1:InDim
for jj=1:HiddenNum for k=1:SamNum
dW1(ii,jj)=dW1(ii,jj)+Error(k)*W2(jj,OutDim)*Hiddenout(k,jj)*(1-Hiddenout(k,jj))*(SamIn(k,ii));
dB1(jj,1)=dB1(jj,1)+Error(k)*W2(jj,OutDim)*Hiddenout(k,jj)*(1-Hiddenout(k,jj)); end
end
end W2=W2-lr*dW2;
B2=B2-lr*dB2; W1=W1-lr*dW1;
B1=B1-lr*dB1;
end Hiddenout=logsig(SamIn*W1+repmat(B1',SamNum,1));
Networkout=Hiddenout*W2+repmat(B2',SamNum,1); aa=postmnmx(Networkout,mint,maxt);
x=a;
newk=aa;
figure
plot(x,d,'r-o',x,newk,'b--+')
legend('原始数据','训练后的数据');
xlabel('x');ylabel('y');
toc

注:在(i5,8G,win7,64位)PC上的运行时间为30s左右。鉴于PSO带有概率性,可以多跑几次,看最佳的一次效果。

转载于:https://www.cnblogs.com/jacksin/p/8835907.html

(PSO-BP)结合粒子群的神经网络算法以及matlab实现的更多相关文章

  1. 群智能优化算法-测试函数matlab源码

    群智能优化算法测试函数matlab源代码 global M; creatematrix(2); %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %画ackley图. %%%% ...

  2. 粒子群算法(PSO)算法解析(简略版)

    粒子群算法(PSO) 1.粒子群算法(PSO)是一种基于群体的随机优化技术: 初始化为一组随机解,通过迭代搜寻最优解. PSO算法流程如图所示(此图是从PPT做好,复制过来的,有些模糊) 2.PSO模 ...

  3. 粒子群算法优化BP生物能神经网络

    定义: 粒子群中每个粒子的位置表示BP神经网络当前迭代中权值的集合,每个粒子的维数由网络中起连接作用的权值的数量和阈值个数决定,以给定训练样本集的神经网络输出误差作为神经网络训练问题的适应度函数,适应 ...

  4. 粒子群优化算法对BP神经网络优化 Matlab实现

    1.粒子群优化算法 粒子群算法(particle swarm optimization,PSO)由Kennedy和Eberhart在1995年提出,该算法模拟鸟集群飞行觅食的行为,鸟之间通过集体的协作 ...

  5. 算法(三)粒子群算法PSO的介绍

    一.引言 在讲算法之前,先看两个例子: 例子一:背包问题,一个书包,一堆物品,每个物品都有自己的价值和体积,装满书包,使得装的物品价值最大. 例子二:投资问题,n个项目,第i个项目投资为ci 收益为p ...

  6. ARIMA模型--粒子群优化算法(PSO)和遗传算法(GA)

    ARIMA模型(完整的Word文件可以去我的博客里面下载) ARIMA模型(英语:AutoregressiveIntegratedMovingAverage model),差分整合移动平均自回归模型, ...

  7. 计算智能(CI)之粒子群优化算法(PSO)(一)

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 计算智能(Computational Intelligence , ...

  8. 【比较】粒子群算法PSO 和 遗传算法GA 的相同点和不同点

    目录 PSO和GA的相同点 PSO和GA不同点 粒子群算法(PSO)和遗传算法(GA)都是优化算法,都力图在自然特性的基础上模拟个体种群的适应性,它们都采用一定的变换规则通过搜索空间求解. PSO和G ...

  9. C语言实现粒子群算法(PSO)二

    上一回说了基本粒子群算法的实现,并且给出了C语言代码.这一篇主要讲解影响粒子群算法的一个重要参数---w.我们已经说过粒子群算法的核心的两个公式为: Vid(k+1)=w*Vid(k)+c1*r1*( ...

随机推荐

  1. 分治与递归-Fibonacci数列兔子问题

    裴波那契(Fibonacci leonardo,约1170-1250)是意大利著名数学家.在他的著作<算盘书>中许多有趣的问题,最富成功的问题是著名的“兔子繁殖问题”: 如果每对兔子每月繁 ...

  2. Github基础使用教程 ———功能介绍

    Github基础使用手把手教程    --功能介绍 本人Github小白,刚摸索的差不多,记录一下经验,小白写出来的东西各位萌新一定看的懂啦~ 本篇内容主要针对想快速学会使用Github这个强大工具的 ...

  3. leetcode 703. Kth Largest Element in a Stream & c++ priority_queue & minHeap/maxHeap

    703. Kth Largest Element in a Stream & c++ priority_queue & minHeap/maxHeap 相关链接 leetcode c+ ...

  4. 记一次pgsql中查询优化(子查询)

    记一次pgsql的查询优化 前言 这是一个子查询的场景,对于这个查询我们不能避免子查询,下面是我一次具体的优化过程. 优化策略 1.拆分子查询,将需要的数据提前在cte中查询出来 2.连表查询,直接去 ...

  5. AJ学IOS 之微博项目实战(10)微博cell中图片的显示以及各种填充模式简介

    AJ分享,必须精品 :一效果 如果直接设置会有拉伸等等的状况,这里主要介绍图片显示的一些细节 二:代码 代码实现其实很简单,微博当中用了一个photos来存放九宫格这些图片,然后用了一个photo类来 ...

  6. Linux访问Window共享文件夹的配置步骤

    1. Window下创建用户XXX(作用:Linux mount时需要提供用户和密码) 2. Window下共享文件夹给XXX用户,并根据实际需要设置读取/写入权限 3. Linux下创建挂载的目录 ...

  7. Thinking in Java,Fourth Edition(Java 编程思想,第四版)学习笔记(十一)之Holding Your Objects

    To solve the general programming problem, you need to create any number of objects, anytime, anywher ...

  8. Jmeter连接mysql数据库?so easy!!!

    一.确保mysql数据库能够通过Navicat等远程连接工具连接. 注意:一定是确保能使用navicat连接,而不是dos窗口! 比如笔者需要查询ecshop数据库下的ecs_admin_user表, ...

  9. springboot 项目使用阿里云短信服务发送手机验证码

    1.注册阿里云账户进行账号实名认证 2.申请短信签名和模板 3.创建access_key和access_secret 4.然后就是代码编写 一.找到产品与服务里面的云通信模块,然后找到短信服务,开通短 ...

  10. Three.js实现3D地图实例分享

    本文主要给大家介绍了关于利用Three.js开发实现3D地图的实践过程,文中通过示例代码介绍的非常详细,对大家学习或者使用three.js具有一定的参考学习价值,需要的朋友们下面随着小编来一起学习学习 ...