C:显然可以设f[i][S]为当前考虑到第i位,[i,i+k)的状态为S的最小能量消耗,这样直接dp是O(nC(k,x))的。考虑矩阵快速幂,构造min+转移矩阵即可,每次转移到下一个特殊点然后暴力处理掉该点的贡献。可以预处理2p次转移矩阵进一步加速。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<map>
using namespace std;
#define ll long long
#define N 80
#define inf 1000000000000000000ll
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,m,k,q,c[10],id[1<<8],t;
map<int,int> d;
struct data
{
int x,y;
bool operator <(const data&a) const
{
return x<a.x;
}
}p[30];
struct matrix
{
int n;ll a[N][N];
matrix operator *(const matrix&b) const
{
matrix c;c.n=n;for (int i=0;i<n;i++) for (int j=0;j<b.n;j++) c.a[i][j]=inf;
for (int i=0;i<n;i++)
for (int j=0;j<b.n;j++)
for (int k=0;k<b.n;k++)
c.a[i][j]=min(c.a[i][j],a[i][k]+b.a[k][j]);
return c;
}
}f,a,g;
matrix power(matrix a,int k)
{
matrix c;c.n=a.n;
for (int i=0;i<t;i++)
for (int j=0;j<t;j++)
c.a[i][j]=inf;
for (int i=0;i<t;i++) c.a[i][i]=0;
for (;k;k>>=1,a=a*a) if (k&1) c=c*a;
return c;
}
signed main()
{
#ifndef ONLINE_JUDGE
freopen("c.in","r",stdin);
freopen("c.out","w",stdout);
#endif
n=read(),m=read(),k=read(),q=read();
for (int i=1;i<=m;i++) c[i]=read();
for (int i=1;i<=q;i++) p[i].x=read(),p[i].y=read(),d[p[i].x]=p[i].y;
sort(p+1,p+q+1);
memset(id,255,sizeof(id));
for (int i=0;i<(1<<m);i++)
{
int cnt=0,j=i;while (j) j^=j&-j,cnt++;
if (cnt==n) id[i]=t++;
}
a.n=t;
for (int i=0;i<t;i++)
for (int j=0;j<t;j++)
a.a[i][j]=inf;
for (int i=0;i<(1<<m);i++)
if (id[i]>=0)
{
if (i&1)
{
for (int x=1;x<=m;x++)
if (!(i&(1<<x))) a.a[id[i]][id[(i|(1<<x))>>1]]=c[x];
}
else a.a[id[i]][id[i>>1]]=0;
}
f.n=1;for (int i=0;i<t;i++) f.a[0][i]=inf;f.a[0][id[(1<<n)-1]]=0;
int cur=1;
for (int i=1;i<=q;i++)
{
if (p[i].x-10>=cur) f=f*power(a,p[i].x-10-cur),cur=p[i].x-10;
int u=i;while (u<q&&p[u+1].x-p[u].x<=10) u++;
while (cur<p[u].x&&cur<k-n+1)
{
g.n=1;for (int x=0;x<t;x++) g.a[0][x]=inf;
for (int j=0;j<(1<<m);j++)
if (id[j]>=0)
{
if (j&1)
{
for (int x=1;x<=m;x++)
if (!(j&(1<<x))) g.a[0][id[(j|(1<<x))>>1]]=min(g.a[0][id[(j|(1<<x))>>1]],f.a[0][id[j]]+c[x]+d[cur+x]);
}
else g.a[0][id[j>>1]]=min(g.a[0][id[j>>1]],f.a[0][id[j]]);
}
f=g;
cur++;
}
i=u;
}
f=f*power(a,k-n-cur+1);
cout<<f.a[0][id[(1<<n)-1]];
return 0;
//NOTICE LONG LONG!!!!!
}

  D:首先考虑如果我们钦定了其中k条边一定在树中,有多少种方案。可以把每个连通分量缩点,将其权值定义为其大小,将一条边的权值定义为其两端的点权值之积,将一棵树的权值定义为所有边权值之积,显然这样缩点后所有树的权值之和,就是钦定这些边后原树的数量。

  注意到上述树权值的定义等价于∏每个点的权值度数。既然出现了度数,考虑与度数关系密切的prufer序列。我们知道prufer序列中每个点的出现次数=其度数-1,所以对于某一种prufer序列,其对应的树的权值是所有点权值之积*prufer序列每个点权值之积。由于我们要求所有树的权值之和,而所有树对应着所有的prufer序列,由乘法分配律可得,这个东西就是所有点权值之积*n点数-2,其中n是原树点的个数。这样就可以知道钦定了边的方案数了。

  然后考虑对所有钦定k条边的情况求和,这样容斥一发就能求出恰有k条边的方案数。显然我们只需要求出所有方案的所有点权值之积的和,可以做一个树上二维背包,即f[i][j][k]为i子树钦定了j条边,根所在连通块大小为k时,子树内所有内连通块大小之积的和。由于对子树大小取min,复杂度是O(n4)。

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cassert>
using namespace std;
#define ll long long
#define N 110
#define P 1000000007
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<'0'||c>'9')) c=getchar();return c;}
int gcd(int n,int m){return m==0?n:gcd(m,n%m);}
int read()
{
int x=0,f=1;char c=getchar();
while (c<'0'||c>'9') {if (c=='-') f=-1;c=getchar();}
while (c>='0'&&c<='9') x=(x<<1)+(x<<3)+(c^48),c=getchar();
return x*f;
}
int n,k,p[N],f[N][N][N],g[N][N],h[N][N],C[N][N],size[N],inv[N],t,root=1;
struct data{int to,nxt;
}edge[N<<1];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
int ksm(int a,int k)
{
int s=1;
for (;k;k>>=1,a=1ll*a*a%P) if (k&1) s=1ll*s*a%P;
return s;
}
void inc(int &x,int y){x+=y;if (x>=P) x-=P;}
void dfs(int k,int from)
{
size[k]=1;f[k][0][1]=1;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from)
{
int x=edge[i].to;
dfs(x,k);
for (int u=0;u<size[k]+size[x];u++)
for (int s=0;s<=u+1;s++)
g[u][s]=f[k][u][s],f[k][u][s]=0;
for (int u=0;u<size[k]+size[x];u++)
for (int s=1;s<=u+1;s++)
for (int v=max(0,u-size[k]);v<=min(u,size[x]);v++)
{
inc(f[k][u][s],1ll*g[u-v][s]*h[x][v]%P);
if (u>v)
for (int t=max(1,s-(u+1));t<=min(s,v+1);t++)
inc(f[k][u][s],1ll*g[u-v-1][s-t]*inv[s-t]%P*f[x][v][t]%P*inv[t]%P*s%P);
}
size[k]+=size[x];
}
for (int i=0;i<size[k];i++)
for (int j=1;j<=i+1;j++)
inc(h[k][i],f[k][i][j]);
}
int calc(int k)
{
int ans=0;
for (int i=k;i<n;i++)
{
int x=h[root][i];
if (i==n-1) x=1;else x=1ll*x*ksm(n,n-2-i)%P;
x=1ll*x*C[i][k]%P;
if (i-k&1) ans=(ans-x+P)%P;else ans=(ans+x)%P;
}
return ans;
}
int main()
{
n=read();
for (int i=1;i<n;i++)
{
int x=read(),y=read();
addedge(x,y),addedge(y,x);
}
C[0][0]=1;
for (int i=1;i<=n;i++)
{
C[i][0]=C[i][i]=1;
for (int j=1;j<i;j++)
C[i][j]=(C[i-1][j-1]+C[i-1][j])%P;
}
for (int i=1;i<=n;i++) inv[i]=ksm(i,P-2);
dfs(root,root);
for (int i=0;i<n;i++) printf("%d ",calc(i));
return 0;
}

  

Codeforces Round #459 Div. 1的更多相关文章

  1. Codeforces Round #459 (Div. 2)

    A. Eleven time limit per test 1 second memory limit per test 256 megabytes input standard input outp ...

  2. Codeforces Round #459 (Div. 2) D. MADMAX DFS+博弈

    D. MADMAX time limit per test 1 second memory limit per test 256 megabytes input standard input outp ...

  3. Codeforces Round #459 (Div. 2):D. MADMAX(记忆化搜索+博弈论)

    D. MADMAX time limit per test1 second memory limit per test256 megabytes Problem Description As we a ...

  4. Codeforces Round #459 (Div. 2):B. Radio Station

    B. Radio Station time limit per test2 seconds memory limit per test256 megabytes Problem Dsecription ...

  5. Codeforces Round #459 (Div. 2)-A. Eleven

    A. Eleven time limit per test1 second memory limit per test256 megabytes Problem Description Eleven ...

  6. Codeforces Round #459 (Div. 2):D. MADMAX(记忆化搜索+博弈论)

    题意 在一个有向无环图上,两个人分别从一个点出发,两人轮流从当前点沿着某条边移动,要求经过的边权不小于上一轮对方经过的边权(ASCII码),如果一方不能移动,则判负.两人都采取最优策略,求两人分别从每 ...

  7. Codeforces Round #459 (Div. 2)The Monster[匹配问题]

    题意 给一个序列,包含(,),?,?可以被当做(或者),问你这个序列有多少合法的子序列. 分析 n^2枚举每一个子序列,暂时将每个?都当做右括号,在枚举右端点的时候同时记录两个信息:当前左括号多余多少 ...

  8. Codeforces Round #459 (Div. 2)C. The Monster

    C. The Monster time limit per test 1 second memory limit per test 256 megabytes input standard input ...

  9. 【Codeforces Round #459 (Div. 2) B】 Radio Station

    [链接] 我是链接,点我呀:) [题意] 在这里输入题意 [题解] 用map模拟一下映射就好了. [代码] #include <bits/stdc++.h> using namespace ...

随机推荐

  1. [翻译] C# 8.0 新特性

    原文: Building C# 8.0 [译注:原文主标题如此,但内容大部分为新特性介绍,所以意译标题为 "C# 8.0 新特性"] C# 的下一个主要版本是 8.0.我们已经为它 ...

  2. 封装自己的dapper lambda扩展-设计篇

    前言 昨天开源了业务业余时间自己封装的dapper lambda扩展,同时写了篇博文<编写自己的dapper lambda扩展-使用篇>简单的介绍了下其使用,今天将分享下它的设计思路 链式 ...

  3. (5)学习笔记 ) ASP.NET CORE微服务 Micro-Service ---- 熔断降级(Polly)

    一. 什么是熔断降级 熔断就是“保险丝”.当出现某些状况时,切断服务,从而防止应用程序不断地尝试执行可能会失败的操作给系统造成“雪崩”,或者大量的超时等待导致系统卡死. 降级的目的是当某个服务提供者发 ...

  4. JqGrid分页按钮图标不显示的bug

    开发中遇到的一个小问题,记录一下,如果有朋友也遇到了相同的问题,可以少走些弯路少花点时间. 如图: 分页插件使用了JqGrid,但是分页栏里出现了问题,上一页.下一页这些按钮的图标都显示为空,记得以前 ...

  5. js中布尔值为false的六种情况

    下面6种值转化为布尔值时为false,其他转化都为true 1.undefined(未定义,找不到值时出现) 2.null(代表空值) 3.false(布尔值的false,字符串"false ...

  6. Windows系统,文件和文件夹命名规则:

    不能包含:< > / \ | : * ? windows中,文件名(包括扩展名)可高达 个字符.文件名可以包含除 ? “ ”/ \ < > * | : 之外的大多数字符:保留文 ...

  7. Linux 典型应用之Mysql

    Mysql 的安装及连接 删除默认安装的 mariadb数据库 yum remove mariadb-libs.x86_64 mysql源下载的网址 https://dev.mysql.com/dow ...

  8. 文件传输协议FTP、SFTP和SCP

    网络通信协议分层 应用层: HTTP(Hypertext Transfer Protocol 超文本传输协议,显示网页) DNS(Domain Name System) FTP(File Transf ...

  9. Es6数值拓展

    Es6数值拓展 一,Number扩展 1,ES6 提供了二进制和八进制数值的新的写法,分别用前缀0b(或0B)和0o(或0O)表示. 将0b和0o前缀的字符串数值转为十进制,要使用Number方法 N ...

  10. 对于vue和react“页面间”传递数据的理解误区

    前言 如果我们想要实现多个标签页之间的通信,可以使用localStorage.cookie等,但是能不能用vue或react呢? 结论 答案是NO,因为vue和react虽然可以在“多个”页面之间传递 ...