贪心

比较巧妙的贪心。。先把所有机器和任务按时间是第一关键字,等级为第二关键字排序。

然后用机器去匹配每一个任务。

排序之后,在时间上满足当前任务的机器,必定也在时间上满足后面的机器,所以我们每次把时间满足当前任务的机器放进候选项中,再在候选项里选出当前任务等级的前驱即可

(时间和等级最大的任务先处理,且尽可能的不浪费机器)

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define full(a, b) memset(a, b, sizeof a)
using namespace std;
typedef long long ll;
inline int lowbit(int x){ return x & (-x); }
inline int read(){
int X = 0, w = 0; char ch = 0;
while(!isdigit(ch)) { w |= ch == '-'; ch = getchar(); }
while(isdigit(ch)) X = (X << 3) + (X << 1) + (ch ^ 48), ch = getchar();
return w ? -X : X;
}
inline int gcd(int a, int b){ return a % b ? gcd(b, a % b) : b; }
inline int lcm(int a, int b){ return a / gcd(a, b) * b; }
template<typename T>
inline T max(T x, T y, T z){ return max(max(x, y), z); }
template<typename T>
inline T min(T x, T y, T z){ return min(min(x, y), z); }
template<typename A, typename B, typename C>
inline A fpow(A x, B p, C lyd){
A ans = 1;
for(; p; p >>= 1, x = 1LL * x * x % lyd)if(p & 1)ans = 1LL * x * ans % lyd;
return ans;
} const int N = 100005;
struct Node{
int t, l;
bool operator < (const Node &rhs) const {
if(t != rhs.t) return t > rhs.t;
return l > rhs.l;
}
}pc[N], task[N];
int vis[N];
int main(){ int n, m;
while(scanf("%d%d", &n, &m) != EOF){
full(vis, 0);
for(int i = 0; i < n; i ++) pc[i].t = read(), pc[i].l = read();
for(int i = 0; i < m; i ++) task[i].t = read(), task[i].l = read();
sort(pc, pc + n), sort(task, task + m);
ll ans = 0; int cnt = 0, j = 0;
for(int i = 0; i < m; i ++){
while(j < n && pc[j].t >= task[i].t) vis[pc[j].l] ++, j ++;
for(int w = task[i].l; w <= 100; w ++){
if(!vis[w]) continue;
vis[w] --, cnt ++;
ans += task[i].t * 500 + task[i].l * 2;
break;
}
}
printf("%d %lld\n", cnt, ans);
}
return 0;
}

HDU4864 Task(算竞进阶习题)的更多相关文章

  1. 洛谷P4178 Tree (算竞进阶习题)

    点分治 还是一道点分治,和前面那道题不同的是求所有距离小于等于k的点对. 如果只是等于k,我们可以把重心的每个子树分开处理,统计之后再合并,这样可以避免答案重复(也就是再同一个子树中出现路径之和为k的 ...

  2. BZOJ 1912 巡逻(算竞进阶习题)

    树的直径 这题如果k=1很简单,就是在树的最长链上加个环,这样就最大化的减少重复的路程 但是k=2的时候需要考虑两个环的重叠部分,如果没有重叠部分,则和k=1的情况是一样的,但是假如有重叠部分,我们可 ...

  3. POJ 2449 Remmarguts' Date (算竞进阶习题)

    A* + dijkstra/spfa 第K短路的模板题,就是直接把最短路当成估价函数,保证估价函数的性质(从当前状态转移的估计值一定不大于实际值) 我们建反图从终点跑最短路,就能求出从各个点到终点的最 ...

  4. BZOJ 1855 股票交易 (算竞进阶习题)

    单调队列优化dp dp真的是难..不看题解完全不知道状态转移方程QAQ 推出方程后发现是关于j,k独立的多项式,所以可以单调队列优化.. #include <bits/stdc++.h> ...

  5. POJ 1821 Fence (算竞进阶习题)

    单调队列优化dp 我们把状态定位F[i][j]表示前i个工人涂了前j块木板的最大报酬(中间可以有不涂的木板). 第i个工人不涂的话有两种情况: 那么F[i - 1][j], F[i][j - 1]就成 ...

  6. POJ 1015 Jury Compromise (算竞进阶习题)

    01背包 我们对于这类选或者不选的模型应该先思考能否用01背包来解. 毫无疑问物体的价值可以看成最大的d+p值,那么体积呢?题目的另一个限制条件是d-p的和的绝对值最小,这启发我们把每个物体的d-p的 ...

  7. BZOJ 2200 道路与航线 (算竞进阶习题)

    dijkstra + 拓扑排序 这道题有负权边,但是卡了spfa,所以我们应该观察题目性质. 负权边一定是单向的,且不构成环,那么我们考虑先将正权边连上.然后dfs一次找到所有正权边构成的联通块,将他 ...

  8. POJ 3974 Palindrome (算竞进阶习题)

    hash + 二分答案 数据范围肯定不能暴力,所以考虑哈希. 把前缀和后缀都哈希过之后,扫描一边字符串,对每个字符串二分枚举回文串长度,注意要分奇数和偶数 #include <iostream& ...

  9. POJ 1966 Cable TV Network (算竞进阶习题)

    拆点+网络流 拆点建图应该是很常见的套路了..一张无向图不联通,那么肯定有两个点不联通,但是我们不知道这两个点是什么. 所以我们枚举所有点,并把每个点拆成入点和出点,每次把枚举的两个点的入点作为s和t ...

随机推荐

  1. Python-序列化模块-json-62

    序列化模块 Eva_J 什么叫序列化——将原本的字典.列表等内容转换成一个字符串的过程就叫做序列化. 比如,我们在python代码中计算的一个数据需要给另外一段程序使用,那我们怎么给? 现在我们能想到 ...

  2. java 浅克隆 深克隆

    对象的克隆是java的一项高级技术,他可以根据给定的对象,获得与其完全相同的另一个对象. 1.浅克隆主要是复制对象的值 2.深克隆:当类存在聚合关系的时候,克隆就必须考虑聚合对象的克隆,可以复制引用类 ...

  3. docker之导出、导入、数据搬迁

    docker 导出 导入有二种,一种是备份镜像,一种备份容器.数据搬迁,最简单粗暴就是直接COPY,volume的路径就行了. 一.导出导入镜像 #导出为tar docker save #ID or  ...

  4. Survey项目总结

    1.Ioc深入理解 Inverse of control org.springframework.scheduling.quartz.SchedulerFactoryBean org.mybatis. ...

  5. [iOS]一行代码集成空白页面占位图(基于runtime+MJRefresh思想)

    2018年01月03日阅读 2472   [iOS]一行代码集成空白页面占位图(基于runtime+MJRefresh思想) LYEmptyView 此框架是本人在5,6个月前,公司启动新项目的时候, ...

  6. 使用log4j记录日志

    目录 log4j的优点 导入log4j的jar包 log4j的错误级别 log4j日志的输出目的地 log4j的配置示例 log4j的全局配置讲解 控制台日志的配置讲解 日志输出文件的配置讲解 使用l ...

  7. 校园电商项目(1) 基于SSM

    第一步:搭好环境 我这里使用Eclipse做本次的项目,tomcat.maven啥的怎么弄就跳过了ヾ(o・ω・)ノ 第二步:创建工程 我们首先创建一个maven项目,选择最后一个,创建完之后发现报错, ...

  8. springboot 如何操作redis

    1.首先应该引入 依赖 <dependency> <groupId>org.springframework.boot</groupId> <artifactI ...

  9. Redis五大数据类型

    首先说明下,Redis是:单线程+多路IO复用技术!!! string set  >  key  +  zset          list hash 常用的几个命令: >keys * 查 ...

  10. django_filter,Search_Filter,Order_Filter,分页

    一.分页drf配置信息: 1.在Lib\site-packages\rest_framework\settings.py中查看: 2.简单分页在项目setting中配置:(所有get请求返回数据每页5 ...