题目描述

  有一个\(n\times m\)的网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走。问至少走多少次才能将财宝捡完。

  此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少次才能把财宝全部捡完。

  \(n,m\leq 1000\)

题解

  定义偏序关系

  把一个格子拆成很多个点,每个点代表一个财宝。

  对于两个点\(a,b\),称\(a<b\)当且仅当\(a\)能走到\(b\)

  那么这道题求的是最小链覆盖

  根据Dilworth定理,最小链覆盖数\(=\)最长反链长度。

  直接DP就行了。

  设\(f_{i,j}\)为以\((i,j)\)为结尾的最长反链长度

\[f_{i,j}=a_{i,j}+\max_{k>i,l<j}f_{k,l}
\]

  时间复杂度:\(O(nm)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int s[1010][1010];
int f[1010][1010];
int a[1010][1010];
void solve()
{
int n,m;
scanf("%d%d",&n,&m);
int i,j;
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
scanf("%d",&a[i][j]);
memset(s,0,sizeof s);
memset(f,0,sizeof f);
int ans=0;
for(i=n;i>=1;i--)
for(j=1;j<=m;j++)
{
s[i][j]=max(s[i][j],s[i][j-1]);
s[i][j]=max(s[i][j],s[i+1][j]);
f[i][j]=s[i][j]+a[i][j];
ans=max(ans,f[i][j]);
s[i-1][j+1]=f[i][j];
}
printf("%d\n",ans);
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
solve();
return 0;
}

【BZOJ3997】【TJOI2015】组合数学 Dilworth定理 DP的更多相关文章

  1. [BZOJ3997][TJOI2015]组合数学(Dilworth定理+DP)

    题目名字是什么就不能往那方面想. 每个点拆成a[i][j]个,问题变为DAG最小路径覆盖,由Dilworth定理转成最长反链. 使用Dilworth定理的时候要注意那些点之间有边,这里任意一个点和其右 ...

  2. 【bzoj3997】[TJOI2015]组合数学 Dilworth定理结论题+dp

    题目描述 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走 ...

  3. BZOJ3997:[TJOI2015]组合数学(DP,Dilworth定理)

    Description 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一 ...

  4. BZOJ3997 TJOI2015组合数学(动态规划)

    copy: Dilworth定理:DAG的最小链覆盖=最大点独立集 最小链覆盖指选出最少的链(可以重复)使得每个点都在至少一条链中 最大点独立集指最大的集合使集合中任意两点不可达 此题中独立的定义即是 ...

  5. BZOJ3997: [TJOI2015]组合数学(网络流)

    3997: [TJOI2015]组合数学 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 405  Solved: 284[Submit][Status ...

  6. BZOJ3997 [TJOI2015]组合数学 【Dilworth定理】

    题目 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少 ...

  7. bzoj3997[TJOI2015]组合数学(求最长反链的dp)

    组合数学 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走 ...

  8. bzoj3997[TJOI2015]组合数学

    http://www.lydsy.com/JudgeOnline/problem.php?id=3997 偏序集,看上一篇随笔. 我们要求最少路径覆盖,可以等价于求最大独立集. 我们要找到一个权值和最 ...

  9. bzoj千题计划298:bzoj3997: [TJOI2015]组合数学

    http://www.lydsy.com/JudgeOnline/problem.php?id=3997 最小链覆盖=最长反链长度 所以题目等价于寻找一条从右上角到左下角的最长路 #include&l ...

随机推荐

  1. 实现多个标签页之间通信的几种方法(sharedworker)

      效果图.gif prologue 之前在网上看到一个面试题:如何实现浏览器中多个标签页之间的通信.我目前想到的方法有三种:使用websocket协议.通过localstorage.以及使用html ...

  2. 第十二届湖南省赛 A - 2016 ( 数学,同余转换)

    给出正整数 n 和 m,统计满足以下条件的正整数对 (a,b) 的数量:       1. 1≤a≤n,1≤b≤m;   2. a×b 是 2016 的倍数.   Input   输入包含不超过 30 ...

  3. 行政区划sql数据脚本

    行政区划sql数据脚本 IF (EXISTS(SELECT * FROM sys.objects WHERE object_id = OBJECT_ID(N'[dbo].[TB_Province]') ...

  4. MySQL分页时统计总记录行数并使用limit返回固定数目的记录

    需求很简单:假设有一个user表,表中实际上有10000条数据,但是我不知道有多少条,我要从数据库中每次取20条数据显示,那么怎么完成呢? 方案一: 首先执行一个 select count(*) as ...

  5. PAT L2-020 功夫传人

    https://pintia.cn/problem-sets/994805046380707840/problems/994805059118809088 一门武功能否传承久远并被发扬光大,是要看缘分 ...

  6. SpringMvc的Controller singleton synchronized

    SpringMvc的controller是singleton的(非线程安全的) - lvyuanj的专栏 - CSDN博客 https://blog.csdn.net/lvyuanj/article/ ...

  7. excel vba 不可查看

    打击共享工作簿 去掉[允许多用户同事编辑,同事允许工作簿合并]

  8. [转帖]Gartner预测:2019年全球公有云规模达2143亿美元

    Gartner预测:2019年全球公有云规模达2143亿美元 https://news.cnblogs.com/n/623341/ 近日,全球领先的信息技术研究和顾问公司 Gartner 发布的最新数 ...

  9. Golang的面向对象实践method

    最近在系统的学习go的语法,一切都弄好了之后准备弄个im项目出来玩.在这个过程中会把看到有趣的写法和语法啥的拿出来分析一下. 我一直以为go语言对面向对象没有支持,但是后面看到了类似类的概念,meth ...

  10. python设计模式第七天【建造者模式】

    1. 建造者模式UML图 2.应用场景 (1)专门创建具有符合属性的对象 3.代码实现 #!/usr/bin/env python #! _*_ coding: UTF-8 _*_ from abc ...