题目描述

  有一个\(n\times m\)的网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走。问至少走多少次才能将财宝捡完。

  此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少次才能把财宝全部捡完。

  \(n,m\leq 1000\)

题解

  定义偏序关系

  把一个格子拆成很多个点,每个点代表一个财宝。

  对于两个点\(a,b\),称\(a<b\)当且仅当\(a\)能走到\(b\)

  那么这道题求的是最小链覆盖

  根据Dilworth定理,最小链覆盖数\(=\)最长反链长度。

  直接DP就行了。

  设\(f_{i,j}\)为以\((i,j)\)为结尾的最长反链长度

\[f_{i,j}=a_{i,j}+\max_{k>i,l<j}f_{k,l}
\]

  时间复杂度:\(O(nm)\)

代码

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int s[1010][1010];
int f[1010][1010];
int a[1010][1010];
void solve()
{
int n,m;
scanf("%d%d",&n,&m);
int i,j;
for(i=1;i<=n;i++)
for(j=1;j<=m;j++)
scanf("%d",&a[i][j]);
memset(s,0,sizeof s);
memset(f,0,sizeof f);
int ans=0;
for(i=n;i>=1;i--)
for(j=1;j<=m;j++)
{
s[i][j]=max(s[i][j],s[i][j-1]);
s[i][j]=max(s[i][j],s[i+1][j]);
f[i][j]=s[i][j]+a[i][j];
ans=max(ans,f[i][j]);
s[i-1][j+1]=f[i][j];
}
printf("%d\n",ans);
}
int main()
{
int t;
scanf("%d",&t);
while(t--)
solve();
return 0;
}

【BZOJ3997】【TJOI2015】组合数学 Dilworth定理 DP的更多相关文章

  1. [BZOJ3997][TJOI2015]组合数学(Dilworth定理+DP)

    题目名字是什么就不能往那方面想. 每个点拆成a[i][j]个,问题变为DAG最小路径覆盖,由Dilworth定理转成最长反链. 使用Dilworth定理的时候要注意那些点之间有边,这里任意一个点和其右 ...

  2. 【bzoj3997】[TJOI2015]组合数学 Dilworth定理结论题+dp

    题目描述 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走 ...

  3. BZOJ3997:[TJOI2015]组合数学(DP,Dilworth定理)

    Description 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一 ...

  4. BZOJ3997 TJOI2015组合数学(动态规划)

    copy: Dilworth定理:DAG的最小链覆盖=最大点独立集 最小链覆盖指选出最少的链(可以重复)使得每个点都在至少一条链中 最大点独立集指最大的集合使集合中任意两点不可达 此题中独立的定义即是 ...

  5. BZOJ3997: [TJOI2015]组合数学(网络流)

    3997: [TJOI2015]组合数学 Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 405  Solved: 284[Submit][Status ...

  6. BZOJ3997 [TJOI2015]组合数学 【Dilworth定理】

    题目 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走多少 ...

  7. bzoj3997[TJOI2015]组合数学(求最长反链的dp)

    组合数学 给出一个网格图,其中某些格子有财宝,每次从左上角出发,只能向下或右走.问至少走多少次才能将财宝捡完.此对此问题变形,假设每个格子中有好多财宝,而每一次经过一个格子至多只能捡走一块财宝,至少走 ...

  8. bzoj3997[TJOI2015]组合数学

    http://www.lydsy.com/JudgeOnline/problem.php?id=3997 偏序集,看上一篇随笔. 我们要求最少路径覆盖,可以等价于求最大独立集. 我们要找到一个权值和最 ...

  9. bzoj千题计划298:bzoj3997: [TJOI2015]组合数学

    http://www.lydsy.com/JudgeOnline/problem.php?id=3997 最小链覆盖=最长反链长度 所以题目等价于寻找一条从右上角到左下角的最长路 #include&l ...

随机推荐

  1. python第八章:多任务--小白博客

    多线程threading 多线程特点: #线程的并发是利用cpu上下文的切换(是并发,不是并行)#多线程执行的顺序是无序的#多线程共享全局变量#线程是继承在进程里的,没有进程就没有线程#GIL全局解释 ...

  2. Python-待

    内置函数总结 https://www.cnblogs.com/jason-lv/p/8243141.html https://www.cnblogs.com/pyyu/p/6702896.html 数 ...

  3. c++入门之引用

    引用通常被用在函数形参传递的过程中.一般的参数传递的过程:将实参进行拷贝,函数中都是对拷贝的变量进行操作,而不是对原变量进行操作.但很多情况下,我们都希望对原变量进行操作.(比如交换两个变量的数值). ...

  4. Comet OJ 热身赛(K题)principal(括号匹配问题+stack模拟)

    principal 已经提交 已经通过 23.66% Total Submission:131 Total Accepted:31 题目描述 阿尔比恩王国潜伏着代号白鸽队''的一群间谍.在没有任务的时 ...

  5. Elasticsearch之配置详解

    Cluster 集群名称,默认为elasticsearch: cluster.name: elasticsearch 设置一个节点的并发数量,有两种情况,一种是在初始复苏过程中: cluster.ro ...

  6. openstack-KVM-存储配置

    一.块存储设备 1.存储设备类型 IDE SCSI 软盘 U盘 virtio磁盘(KVM使用类型) 2.查看存储设备 lspci | grep IDE lspci | grep SCSI lspci ...

  7. [python]解决Windows下安装第三方插件报错:UnicodeDecodeError: 'ascii' codec can't decode byte 0xcb in position 0:

    系统:win7IDE:pycharm Python版本:2.7 安装第三方插件是报错:  报错原因与编码有关,pip把下载的临时文件存放在了用户临时文件中,这个目录一般是C:\Users\用户名\Ap ...

  8. 在IDEA中配置Spring的XML装配

    不考虑混合模式的话,Spring有三类装配Bean的方法,自动装配和Java代码装配都会很容易上手,但在弄XML装配时遇到了问题,这与IDEA环境有关. 装配时需要在源码中配置XML文件的位置,我看别 ...

  9. 【问题解决方案】之 关于某江加密视频swf专用播放器仍无法播放的问题

    前言: 从pt上下载了一些语言学习的视频之后一直打不开,百度谷歌了若干种方法仍然无解.无奈放弃. 某日从百度知道里又看到一个方法,试了一下,居然灵了.呜呼哀哉.赶紧记下来. 原方法链接:https:/ ...

  10. Jeecg-Boot Spring Boot

    Jeecg-Boot 1.0 发布,企业级快速开发平台 - 开源中国https://www.oschina.net/news/104889/jeecg-boot-1-0-released