传送门

luogu

显然每个数的贡献可以一起算感性理解一下,于是答案就是权值总和乘以每个数被算了几次

那个"集合大小为\(|S|\)的集合权值为权值和乘\(|S|\)",可以看成一个数所在集合每有一个数,这个数就要算一次,于是那个次数就是所有情况中有某个数和多少次数出现在过同一个集合中.首先他一直会和自己在同一个集合,所以方案为\(S(n,k)\).然后对于其他数,方案为\(S(n-1,k)*(n-1)\),也就是其他数先放好,然后其他所有数都会让当前这个数多加1次

关于\(S(n,k)\)强烈安利这里

#include<bits/stdc++.h>
#define LL long long
#define db double
#define il inline
#define pb push_back
#define mk make_pair
#define ft first
#define sc second using namespace std;
const int N=200000+10,mod=1e9+7;
il LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int n,k,sm,fac[N],iac[N],inv[N];
LL fpow(int a,int b){int an=1;while(b){if(b&1) an=1ll*an*a%mod;a=1ll*a*a%mod,b>>=1;} return an;}
LL C(int n,int m){return m<0||n<m?0:1ll*fac[n]*iac[m]%mod*iac[n-m]%mod;}
LL S(int n,int m)
{
LL an=0;
for(int i=0;i<=m;++i)
{
int x=1ll*C(m,i)*fpow(m-i,n)%mod;
an=(an+((i&1)?mod-x:x))%mod;
}
return 1ll*an*iac[m]%mod;
} int main()
{
n=rd(),k=rd();
for(int i=1;i<=n;++i) sm=(sm+rd())%mod;
fac[0]=1;
for(int i=1;i<=n;++i) fac[i]=1ll*fac[i-1]*i%mod;
iac[n]=fpow(fac[n],mod-2);
for(int i=n;i;--i) iac[i-1]=1ll*iac[i]*i%mod;
cout<<1ll*(S(n,k)+1ll*S(n-1,k)*(n-1)%mod)%mod*sm%mod;
return 0;
}

CF961G Partitions的更多相关文章

  1. CF961G Partitions(第二类斯特林数)

    题目 CF961G 前置 斯特林数\(\Longrightarrow\)斯特林数及反演总结 做法 相信大家能得出一个一眼式:\[Ans=\sum\limits_{i=1}^n w_i\sum\limi ...

  2. CF961G Partitions(第二类斯特林数)

    传送门 对于每一个元素,我们只要能求出它的出现次数\(sum\),那么每个元素的贡献都是一样的,最终的答案为\(sum\times \sum_{i=1}^n w_i\) 那么分别讨论 如果这个元素自己 ...

  3. 题解 [CF961G] Partitions

    题面 解析 首先我们观察这个定义, 可以发现每个元素在统计答案时是平等的, 也就是单个元素的权值对答案没有特别的影响. 设元素权值为\(w[i]\), 那么我们就可以知道答案是\(\sum_{i=1} ...

  4. FFT/NTT复习笔记&多项式&生成函数学习笔记Ⅱ

    因为垃圾电脑太卡了就重开了一个... 前传:多项式Ⅰ u1s1 我预感还会有Ⅲ 多项式基础操作: 例题: 26. CF438E The Child and Binary Tree 感觉这题作为第一题还 ...

  5. 【CF961G】Partitions 第二类斯特林数

    [CF961G]Partitions 题意:给出n个物品,每个物品有一个权值$w_i$,定义一个集合$S$的权值为$W(S)=|S|\sum\limits_{x\in S} w_x$,定义一个划分的权 ...

  6. 【CF961G】Partitions(第二类斯特林数)

    [CF961G]Partitions(第二类斯特林数) 题面 CodeForces 洛谷 题解 考虑每个数的贡献,显然每个数前面贡献的系数都是一样的. 枚举当前数所在的集合大小,所以前面的系数\(p\ ...

  7. 【cf961G】G. Partitions(组合意义+第二类斯特林数)

    传送门 题意: 给出\(n\)个元素,每个元素有价值\(w_i\).现在要对这\(n\)个元素进行划分,共划分为\(k\)组.每一组的价值为\(|S|\sum_{i=0}^{|S|}w_i\). 最后 ...

  8. 题解 CF961G 【Partitions】

    题目传送门 题目大意 给出\(n,k\),以及\(w_{1,2,..,n}\),定义一个集合\(S\)的权值\(W(S)=|S|\sum_{x\in S} w_x\),定义一个划分\(R\)的权值为\ ...

  9. 【CodeForces】961 G. Partitions 斯特林数

    [题目]G. Partitions [题意]n个数$w_i$,每个非空子集S的价值是$W(S)=|S|\sum_{i\in S}w_i$,一种划分方案的价值是所有非空子集的价值和,求所有划分成k个非空 ...

随机推荐

  1. eclipse 设置

    修改工作空间默认编码:Window --> Preferences --> General --> Workspace --> Text file encoding --> ...

  2. iview 模态框点击确定按钮不消失

    <div slot="footer"> <Button type="text" size="large" @click=& ...

  3. Web 服务器被配置为不列出此目录的内容。

    vs2015运行类库程序,遇到问题如下图, 最可能的原因: 没有为请求的 URL 配置默认文档,并且没有在服务器上启用目录浏览. 解决方法: 确认网站或应用程序配置文件中的 configuration ...

  4. POJ 3349 Snowflake Snow Snowflakes (Hash)

    Snowflake Snow Snowflakes Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 48646   Accep ...

  5. springboot整合jsp

    由于不想使用新模版,增加学习成本,故此延用jsp: 1.pom 文件 <!-- jsp --> <dependency> <groupId>org.apache.t ...

  6. [Discuz!] Discuz X1.5点击“发帖”出现XML代码的解决办法!

    使用的是Discuz X1.5程序,不知什么原因,今天突然出现了大问题,就是在点击“发帖”的时候,原来正常显示的网页竟然变成了XML代码!经过一番查找资料,也未能找到是什么原因导致的,只是找到了解决办 ...

  7. RJ45连接器

    http://www.huilyn.com/path315.html      HBJ-6308ANLF http://www.hanrun.com/en/           HR971169C h ...

  8. DB9 ------ 接口定义

    下图是母座和公座的接口定义: 特别提醒:以上是公座和母座的接口定义,如果是串口线,RXD就变成TXD,以此类推.

  9. mac/Linux源码安装TensorFlow

    因为用pip命令直接下载安装会链接到google,导致打不开,比如使用pip install tensorflow碰到如下的问题.因此在本文中,主要介绍了如何通过源码进行TensorFlow的安装 $ ...

  10. u-boot(六)小结

    目录 u-boot(六)小结 概述 内存分布 内核交互参数 title: u-boot(六)小结 tags: linux date: 2018-09-27 23:23:05 --- u-boot(六) ...