【AtCoder2134】ZigZag MST(最小生成树)
【AtCoder2134】ZigZag MST(最小生成树)
题面
题解
这题就很鬼畜。。
既然每次连边,连出来的边的权值是递增的,所以拿个线段树xjb维护一下就可以做了。那么意味着只有前面的点集被连在一起之后才可能选择后面的边,因此我们可以强制修改一下边的连接方式,只需要把新加入的点和联通块中的任意一个点连接在一起就好了。那么可以先在\((A,B)\)之间连一条权值为\(C\)的边,接下来的所有边都可以连成\((A,A+1),(A+1,A+2)\)的形式。
这样子就可以把所有点排成一个环,维护相邻两个点之间的权值的最小值,那么可以从最小值开始把整个环扫一遍来更新整个环的答案。
这样子一共就产生了\(n+Q\)条边,直接跑克鲁斯卡尔就好了。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
#define MAX 200200
inline int read()
{
int x=0;bool t=false;char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=true,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return t?-x:x;
}
struct Line{int u,v,w;}e[MAX<<1];
bool operator<(Line a,Line b){return a.w<b.w;}
int n,Q,m,v[MAX],f[MAX];long long ans=0;
int getf(int x){return x==f[x]?x:f[x]=getf(f[x]);}
int main()
{
n=read();Q=read();memset(v,127,sizeof(v));
while(Q--)
{
int A=read()+1,B=read()+1,C=read();
e[++m]=(Line){A,B,C};
v[A%n+1]=min(v[A%n+1],C+1);
v[B%n+1]=min(v[B%n+1],C+2);
}
int pos=1;
for(int i=2;i<=n;++i)if(v[i]<v[pos])pos=i;
for(int i=pos%n+1,j=pos;i!=pos;j=i,i=i%n+1)v[i]=min(v[i],v[j]+2);
for(int i=2;i<=n;++i)e[++m]=(Line){i-1,i,v[i]};
e[++m]=(Line){1,n,v[1]};
sort(&e[1],&e[m+1]);
for(int i=1;i<=n;++i)f[i]=i;
for(int i=1;i<=m;++i)
{
int u=getf(e[i].u),v=getf(e[i].v);
if(u==v)continue;
ans+=e[i].w;f[u]=v;
}
printf("%lld\n",ans);
return 0;
}
【AtCoder2134】ZigZag MST(最小生成树)的更多相关文章
- AT2134 Zigzag MST 最小生成树
正解:最小生成树 解题报告: 先放下传送门QAQ 然后这题,首先可以发现这神奇的连边方式真是令人头大,,,显然要考虑转化掉QAQ 大概看一下可以发现点对的规律是,左边++,交换位置,再仔细想下,就每个 ...
- Atcoder CODE FESTIVAL 2016 Final G - Zigzag MST[最小生成树]
题意:$n$个点,$q$次建边,每次建边选定$x,y$,权值$c$,然后接着$(y,x+1,c+1),(x+1,y+1,c+2),(y+1,x+2,c+3),(x+2,y+2,c+4)\dots$(画 ...
- [题解] [AtCoder2134] Zigzag MST
题面 题解 考虑kruscal的过程 对于三个点\(x, y, x + 1\), 我们可以将\((x, y, z), (y, x + 1, z + 1)\)看做\((x, y, z), (x, x + ...
- Atcoder2134 Zigzag MST
问题描述 We have a graph with N vertices, numbered 0 through N−1. Edges are yet to be added. We will pro ...
- MST最小生成树
首先,贴上一个很好的讲解贴: http://www.wutianqi.com/?p=3012 HDOJ 1233 还是畅通工程 http://acm.hdu.edu.cn/showproblem.ph ...
- [BZOJ1937][SHOI2004]Mst最小生成树(KM算法,最大费用流)
1937: [Shoi2004]Mst 最小生成树 Time Limit: 3 Sec Memory Limit: 64 MBSubmit: 802 Solved: 344[Submit][Sta ...
- 【BZOJ1937】[Shoi2004]Mst 最小生成树 KM算法(线性规划)
[BZOJ1937][Shoi2004]Mst 最小生成树 Description Input 第一行为N.M,其中 表示顶点的数目, 表示边的数目.顶点的编号为1.2.3.…….N-1.N.接下来的 ...
- 【题解】 AT2134 Zigzag MST
[题解]AT2134 Zigzag MST 一道MST好题 \(Anson\)有云: 要么是减少边的数量. 要么是改变连接边的方式. 那么如何减少边的数量呢?很简单,把所有不可能对答案产生贡献的边去掉 ...
- [poj1679]The Unique MST(最小生成树)
The Unique MST Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 28207 Accepted: 10073 ...
随机推荐
- Elasticsearch - 简单介绍
Elasticsearch 简介 1. 什么是 Elasticsearch ElasticSearch 是一个基于 Lucene 的搜索服务器. 它了一个分布式多 用户能力的全文搜索引擎,能够达到实时 ...
- IdentityServer4【QuickStart】之使用ResourceOwnerPassword流程来保护API
使用ResourceOwnerPassword流程来保护API OAuth2.0中的ResourceOwnerPassword授权流程允许一个客户端发送username和password到token服 ...
- ES6学习之let
块级作用域 ; i < ; i++){} console.log(i); ; j < ; j++){} console.log(j); //"ReferenceError: j ...
- ZJU_1145 OR POJ_1100 Dreisam Equations
Dreisam Equations { 两个网站的题有点不一样(ZJH有特判)POJ时间卡得紧,建议去POJ过 } 题目大意: 给你一个字符串:是一个等式,等式左边是一个数,右边由若干个数和()构成, ...
- spring mvc常用注解总结
1.@RequestMapping@RequestMappingRequestMapping是一个用来处理请求地址映射的注解(将请求映射到对应的控制器方法中),可用于类或方法上.用于类上,表示类中的所 ...
- checkbox操作判断 Jquery选择器
function checkAll(d){ console.log(d); console.log(d.checked); //注意 这里是d不是$(d) 不是jQuery对象 if(d.checke ...
- Golang的聊天服务器实践(群聊,广播)(一)
其实从上学开始就一直想写一个im. 最近深入go,真是学会了太多,感觉人森虽然苦短,但是也不能只用python.很多知识是不用编译型语言无法了解的. 该来的还是会来,现在会一步一步用go把这个服务器完 ...
- mvc学习过程碰到问题
Fluent API配置 单例模式+Autofac 批量注入
- Qt QLineEdit
//lineEdit显示文字 QLineEdit *lineEdit = new QLineEdit(widget); lineEdit->setObjectName(QString()); l ...
- 了解AutoCAD对象层次结构 —— 3 ——数据库
数据库的结构是什么样的?对象是如何存储在数据库中的?这些问题我们需要搞明白.在此我们可以借助工具ArxDbg或MgdDbg来查看数据库结构及其内容.下图就是利用MgdDbg工具查看到的内容,我们可以看 ...