import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt #Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets("/niu/mnist_data/",one_hot=False) # Parameter
learning_rate = 0.001
training_epochs = 20
batch_size = 256
display_step = 1
examples_to_show = 10 # Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28像素即784个特征值) #tf Graph input(only pictures)
X=tf.placeholder("float", [None,n_input]) # hidden layer settings
n_hidden_1 = 128
n_hidden_2 = 64
n_hidden_3 = 10
n_hidden_4 = 2 weights = {
'encoder_h1': tf.Variable(tf.random_normal([n_input,n_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2])),
'encoder_h3': tf.Variable(tf.random_normal([n_hidden_2,n_hidden_3])),
'encoder_h4': tf.Variable(tf.random_normal([n_hidden_3,n_hidden_4])), 'decoder_h1': tf.Variable(tf.random_normal([n_hidden_4,n_hidden_3])),
'decoder_h2': tf.Variable(tf.random_normal([n_hidden_3,n_hidden_2])),
'decoder_h3': tf.Variable(tf.random_normal([n_hidden_2,n_hidden_1])),
'decoder_h4': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])),
'encoder_b4': tf.Variable(tf.random_normal([n_hidden_4])), 'decoder_b1': tf.Variable(tf.random_normal([n_hidden_3])),
'decoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b3': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b4': tf.Variable(tf.random_normal([n_input])),
} def encoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']),
biases['encoder_b3']))
layer_4 = tf.add(tf.matmul(layer_3, weights['encoder_h4']),
biases['encoder_b4'])
return layer_4 #定义decoder
def decoder(x):
# Decoder Hidden layer with sigmoid activation #2
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']),
biases['decoder_b3']))
layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights['decoder_h4']),
biases['decoder_b4']))
return layer_4 # Construct model
encoder_op = encoder(X) # 128 Features
decoder_op = decoder(encoder_op) # 784 Features # Prediction
y_pred = decoder_op #After
# Targets (Labels) are the input data.
y_true = X #Before cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) # Launch the graph
with tf.Session() as sess: sess.run(tf.global_variables_initializer())
total_batch = int(mnist.train.num_examples/batch_size)
# Training cycle
for epoch in range(training_epochs):
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
# Display logs per epoch step
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1),
"cost=", "{:.9f}".format(c)) print("Optimization Finished!") encode_result = sess.run(encoder_op,feed_dict={X:mnist.test.images})
plt.scatter(encode_result[:,0],encode_result[:,1],c=mnist.test.labels)
plt.title('Matplotlib,AE,classification--Jason Niu')
plt.show()

  

TF之AE:AE实现TF自带数据集AE的encoder之后decoder之前的非监督学习分类—Jason niu的更多相关文章

  1. TF之AE:AE实现TF自带数据集数字真实值对比AE先encoder后decoder预测数字的精确对比—Jason niu

    import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #Import MNIST data from t ...

  2. TF:利用TF的train.Saver载入曾经训练好的variables(W、b)以供预测新的数据—Jason niu

    import tensorflow as tf import numpy as np W = tf.Variable(np.arange(6).reshape((2, 3)), dtype=tf.fl ...

  3. TF:利用sklearn自带数据集使用dropout解决学习中overfitting的问题+Tensorboard显示变化曲线—Jason niu

    import tensorflow as tf from sklearn.datasets import load_digits #from sklearn.cross_validation impo ...

  4. 对抗生成网络-图像卷积-mnist数据生成(代码) 1.tf.layers.conv2d(卷积操作) 2.tf.layers.conv2d_transpose(反卷积操作) 3.tf.layers.batch_normalize(归一化操作) 4.tf.maximum(用于lrelu) 5.tf.train_variable(训练中所有参数) 6.np.random.uniform(生成正态数据

    1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的 ...

  5. TF之RNN:实现利用scope.reuse_variables()告诉TF想重复利用RNN的参数的案例—Jason niu

    import tensorflow as tf # 22 scope (name_scope/variable_scope) from __future__ import print_function ...

  6. TF之RNN:TF的RNN中的常用的两种定义scope的方式get_variable和Variable—Jason niu

    # tensorflow中的两种定义scope(命名变量)的方式tf.get_variable和tf.Variable.Tensorflow当中有两种途径生成变量 variable import te ...

  7. TF之RNN:matplotlib动态演示之基于顺序的RNN回归案例实现高效学习逐步逼近余弦曲线—Jason niu

    import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEP ...

  8. TF之RNN:TensorBoard可视化之基于顺序的RNN回归案例实现蓝色正弦虚线预测红色余弦实线—Jason niu

    import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEP ...

  9. TF之RNN:基于顺序的RNN分类案例对手写数字图片mnist数据集实现高精度预测—Jason niu

    import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...

随机推荐

  1. Modbus库开发笔记之三:Modbus TCP Server开发

    在完成了前面的工作后,我们就可以实现有针对性的应用了,首先我们来实现Modbus TCP的服务器端应用.当然我们不是做具体的应用,而是对Modbus TCP的服务器端应用进行封装以供有需要时调用. 这 ...

  2. confluence搭建破解及汉化教程

    注:本文参考了 < confluence搭建破解及汉化教程  > 本文是在yum环境搭建好,且可用联网的前提下进行的实际操作并作记录的. 关于yum本地环境搭建可以参考此文:<Cen ...

  3. Confluence 6 home 修改 Home 目录的位置

    当 Confluence 第一次启动的时候,Confluence 将会读取 confluence-init.properties 文件并从这个文件中确定如何去查找 Home 目录. 希望修改 home ...

  4. Confluence 6 用户目录图例 - 只读连接 LDAP 整合本地用户组

    上面的图:Confluence  连接到一 LDAP 目录,权限对本地用户组设置为只读. https://www.cwiki.us/display/CONFLUENCEWIKI/Diagrams+of ...

  5. SWift中 '?' must be followed by a call, member lookup, or subscript 错误解决方案

    那是因为你在使用自己写的分类时没有指定返回的数据类型  指定下返回数据类型就好了 我是用的oc写的分类在Swift中使用的 错误代码 private lazy var btn = UIButton.C ...

  6. Scratch 2.0-Find The Mouse 发布!

    日期:2018.8.26 星期日 博客期:007 今天随便写了一个小型游戏程序,哈哈!虽然小,但用到的逻辑还是有一定水平的.呼~毕竟就这一下子也写不出来微软一样的公司嘛!哈哈,截图放上来! 游戏分为四 ...

  7. redis持久化之AOF

    一:Redis的AOF是什么? 以日志的形式来记录每个写操作(读操作不记录),将Redis执行过的所有写指令记录下来(读操作不记录),只许追加文件但不可以改写文件,redis启动之初会读取该文件重新构 ...

  8. python网络爬虫笔记(二)

    一.函数调用的默认设置 1.def enroll(name,grnder,age=4,city='Shanghai'): print (''name:',name) print (''gender', ...

  9. hdu1198 普通的并查集

    今天开始(第三轮)并查集,,之前学的忘了一些 本题很简单直接上代码 #include<iostream> #include<cstring> #include<cstdi ...

  10. Git使用四:查看工作状态和历史提交

    查看当前的工作状态:git status On branch master:现在位于master分支里面nothing to commit, working tree clean:没有需要提交的文件, ...