TF之AE:AE实现TF自带数据集AE的encoder之后decoder之前的非监督学习分类—Jason niu
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt #Import MNIST data
from tensorflow.examples.tutorials.mnist import input_data
mnist=input_data.read_data_sets("/niu/mnist_data/",one_hot=False) # Parameter
learning_rate = 0.001
training_epochs = 20
batch_size = 256
display_step = 1
examples_to_show = 10 # Network Parameters
n_input = 784 # MNIST data input (img shape: 28*28像素即784个特征值) #tf Graph input(only pictures)
X=tf.placeholder("float", [None,n_input]) # hidden layer settings
n_hidden_1 = 128
n_hidden_2 = 64
n_hidden_3 = 10
n_hidden_4 = 2 weights = {
'encoder_h1': tf.Variable(tf.random_normal([n_input,n_hidden_1])),
'encoder_h2': tf.Variable(tf.random_normal([n_hidden_1,n_hidden_2])),
'encoder_h3': tf.Variable(tf.random_normal([n_hidden_2,n_hidden_3])),
'encoder_h4': tf.Variable(tf.random_normal([n_hidden_3,n_hidden_4])), 'decoder_h1': tf.Variable(tf.random_normal([n_hidden_4,n_hidden_3])),
'decoder_h2': tf.Variable(tf.random_normal([n_hidden_3,n_hidden_2])),
'decoder_h3': tf.Variable(tf.random_normal([n_hidden_2,n_hidden_1])),
'decoder_h4': tf.Variable(tf.random_normal([n_hidden_1, n_input])),
}
biases = {
'encoder_b1': tf.Variable(tf.random_normal([n_hidden_1])),
'encoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'encoder_b3': tf.Variable(tf.random_normal([n_hidden_3])),
'encoder_b4': tf.Variable(tf.random_normal([n_hidden_4])), 'decoder_b1': tf.Variable(tf.random_normal([n_hidden_3])),
'decoder_b2': tf.Variable(tf.random_normal([n_hidden_2])),
'decoder_b3': tf.Variable(tf.random_normal([n_hidden_1])),
'decoder_b4': tf.Variable(tf.random_normal([n_input])),
} def encoder(x):
# Encoder Hidden layer with sigmoid activation #1
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['encoder_h1']),
biases['encoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['encoder_h2']),
biases['encoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['encoder_h3']),
biases['encoder_b3']))
layer_4 = tf.add(tf.matmul(layer_3, weights['encoder_h4']),
biases['encoder_b4'])
return layer_4 #定义decoder
def decoder(x):
# Decoder Hidden layer with sigmoid activation #2
layer_1 = tf.nn.sigmoid(tf.add(tf.matmul(x, weights['decoder_h1']),
biases['decoder_b1']))
layer_2 = tf.nn.sigmoid(tf.add(tf.matmul(layer_1, weights['decoder_h2']),
biases['decoder_b2']))
layer_3 = tf.nn.sigmoid(tf.add(tf.matmul(layer_2, weights['decoder_h3']),
biases['decoder_b3']))
layer_4 = tf.nn.sigmoid(tf.add(tf.matmul(layer_3, weights['decoder_h4']),
biases['decoder_b4']))
return layer_4 # Construct model
encoder_op = encoder(X) # 128 Features
decoder_op = decoder(encoder_op) # 784 Features # Prediction
y_pred = decoder_op #After
# Targets (Labels) are the input data.
y_true = X #Before cost = tf.reduce_mean(tf.pow(y_true - y_pred, 2))
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) # Launch the graph
with tf.Session() as sess: sess.run(tf.global_variables_initializer())
total_batch = int(mnist.train.num_examples/batch_size)
# Training cycle
for epoch in range(training_epochs):
# Loop over all batches
for i in range(total_batch):
batch_xs, batch_ys = mnist.train.next_batch(batch_size) # max(x) = 1, min(x) = 0
# Run optimization op (backprop) and cost op (to get loss value)
_, c = sess.run([optimizer, cost], feed_dict={X: batch_xs})
# Display logs per epoch step
if epoch % display_step == 0:
print("Epoch:", '%04d' % (epoch+1),
"cost=", "{:.9f}".format(c)) print("Optimization Finished!") encode_result = sess.run(encoder_op,feed_dict={X:mnist.test.images})
plt.scatter(encode_result[:,0],encode_result[:,1],c=mnist.test.labels)
plt.title('Matplotlib,AE,classification--Jason Niu')
plt.show()
TF之AE:AE实现TF自带数据集AE的encoder之后decoder之前的非监督学习分类—Jason niu的更多相关文章
- TF之AE:AE实现TF自带数据集数字真实值对比AE先encoder后decoder预测数字的精确对比—Jason niu
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt #Import MNIST data from t ...
- TF:利用TF的train.Saver载入曾经训练好的variables(W、b)以供预测新的数据—Jason niu
import tensorflow as tf import numpy as np W = tf.Variable(np.arange(6).reshape((2, 3)), dtype=tf.fl ...
- TF:利用sklearn自带数据集使用dropout解决学习中overfitting的问题+Tensorboard显示变化曲线—Jason niu
import tensorflow as tf from sklearn.datasets import load_digits #from sklearn.cross_validation impo ...
- 对抗生成网络-图像卷积-mnist数据生成(代码) 1.tf.layers.conv2d(卷积操作) 2.tf.layers.conv2d_transpose(反卷积操作) 3.tf.layers.batch_normalize(归一化操作) 4.tf.maximum(用于lrelu) 5.tf.train_variable(训练中所有参数) 6.np.random.uniform(生成正态数据
1. tf.layers.conv2d(input, filter, kernel_size, stride, padding) # 进行卷积操作 参数说明:input输入数据, filter特征图的 ...
- TF之RNN:实现利用scope.reuse_variables()告诉TF想重复利用RNN的参数的案例—Jason niu
import tensorflow as tf # 22 scope (name_scope/variable_scope) from __future__ import print_function ...
- TF之RNN:TF的RNN中的常用的两种定义scope的方式get_variable和Variable—Jason niu
# tensorflow中的两种定义scope(命名变量)的方式tf.get_variable和tf.Variable.Tensorflow当中有两种途径生成变量 variable import te ...
- TF之RNN:matplotlib动态演示之基于顺序的RNN回归案例实现高效学习逐步逼近余弦曲线—Jason niu
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEP ...
- TF之RNN:TensorBoard可视化之基于顺序的RNN回归案例实现蓝色正弦虚线预测红色余弦实线—Jason niu
import tensorflow as tf import numpy as np import matplotlib.pyplot as plt BATCH_START = 0 TIME_STEP ...
- TF之RNN:基于顺序的RNN分类案例对手写数字图片mnist数据集实现高精度预测—Jason niu
import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_dat ...
随机推荐
- 哎呀,搬运blog好累啊,96篇呢QwQ
累死了,哼 哎呀,算了,不搬了不搬了
- 如果Android真的收费了,你怎么看?
前言 今天突然看到一群里有人发了下面这样一张图片,然后群里又炸了! 于是又和同事讨论了android收费的问题,然后隔壁正在玩农药的UI妹子就笑了... 没错! 安卓可能要收费了!安卓可能要收费了 ...
- 《深入理解Oracle 12c数据库管理(第二版)》PDF
一:下载获取位置: 二:本书图样: 三:本书目录: 图书目录: 第1章 安装Oracle 1.1 了解OFA 1.1.1 Oracle清单目录 1.1.2 Oracle基础目录 1.1.3 Oracl ...
- Confluence 6 配置推荐更新邮件通知默认的初始化设置
Confluence 为订阅者发送常规邮件报告,这个邮件报告中包含有用户具有查看权限的空间的最新的内容.这个被称为 推荐更新(Recommended Updates)通知. 如果你具有 Conflue ...
- 【JS】中ajax的URL中包含中文,后台接收乱码
[问题]ajax提交get请求,url中参数包含中文,后台接收到显示乱码. [解决方案]前台: function getSiteInfoByName(siteName){ var res; $.aja ...
- Python1 简介及安装、基础
Python介绍 Python是面向对象,高级语言,解释,动态和多用途编程语言.Python易于学习,而且功能强大,功能多样的脚本语言使其对应用程序开发具有吸引力. Python的语法和动态类型具有其 ...
- cf里的一些简单组合数题
cf711D 成环的和不成环的要单独计算,环用双联通做的QAQ /* 所有情况-成环的情况 */ #include<bits/stdc++.h> using namespace std; ...
- cf862d 交互式二分
/* 二分搜索出一个01段或10即可 先用n个0确定1的个数num 然后测试区间[l,mid]是否全是0或全是1 如果是,则l=mid,否则r=mid,直到l+1==r 然后再测试l是1还是r是1 如 ...
- 将眼底图片生成的txt文件进行格式化处理
# -*- coding: utf-8 -*- """ 将图片转换生成的txt文件进行格式化处理 """ import os import ...
- 饮冰三年-人工智能-linux-01通过VM虚拟机安装contes系统
先决条件:VM虚拟机的安装.contes系统的镜像文件 1:创建新的虚拟机 2:下一步,稍后安装操作系统 3:选择对应的系统 4:选择对应的路径 至此虚拟机已经创建完成(相当于买了一台新电脑) 5:编 ...