大数据技术 - 分布式文件系统 HDFS 的设计
本章内容介绍下 Hadoop 自带的分布式文件系统,HDFS 即 Hadoop Distributed Filesystem。HDFS 能够存储超大文件,可以部署在廉价的服务器上,适合一次写入多次读取的场景。但 HDFS 不适合低延迟,存储大量小文件以及修改文件内容的场景。HDFS 应用比较广泛,如:MR任务、Spark任务、Hive 数据仓库以及 Hbase 数据库,它们的底层存储都可以基于 HDFS 。本章将介绍 HDFS 集群的架构设计以及相关的重要概念。
HDFS的设计以及概念
HDFS集群是典型的 master/slave 架构,master 节点叫做 NameNode,salve 节点叫做 DataNode。最简单的 HDFS 集群便是一个 NameNode 节点和多个 DataNode 节点,HDFS 集群的架构图如下
Block:数据块,HDFS 集群将存储的文件划分为多个分块,块作为独立的存储单元,默认大小为为 128M。如果某个文件超过集群单机存储容量,分块可以解决该问题;其次按照块进行存储、备份能简化系统的设计。默认块大小修改 hdfs-site.xml 文件中的 dfs.blocksize 配置。
NameNode:HDFS 集群的 Master 节点,维护集群文件的目录结构(命名空间)和编辑日志文件,同时在内存中记录文件各个块所在的数据节点的信息。
DataNode:HDFS 集群的 Slave 节点,负责存储实际的数据。根据需要存储和检索数据块,并定期向 NameNode 发送他们所存储的数据块列表。为了实现数据存储的高可靠,HDFS 将一个块存储在不同的 DataNode 节点, 默认是 3 个,可以通过 hdfs-site.xml 文件中的 dfs.replication 配置修改默认值。如果当前 DataNode 中的数据块损坏, 可以从其他 DataNode 节点复制一个正确的数据块。
以上是架构图中显而易见的几个重要概念,接下来将结合架构设计中的高可用、可扩展性来介绍下架构图中隐藏的几个重要概念。
联邦 HDFS:这个主要是为了解决可扩展性的问题,我们知道 NameNode 进程的内存中存放了数据与数据位置的对应关系,对于一个文件数据量多的集群来说,NameNode 的内存将成为集群规模扩大的瓶颈。因此,单一 NameNode 的集群并不可取。Hadoop 2.x 的发行版引入了联邦 HDFS 允许向集群中添加 NameNode 节点实现横向扩展。每一个 NameNode 管理命名空间中的一部分,每个 NameNode 维护一个命名空间卷(namespace volume),命名空间卷之间相互独立,一个 NameNode 失效不会影响其他 NameNode 维护的命名空间。
HDFS HA: 这个解决高可用,即 HDFS High Available。这一实现中配置了一对活动-备用(active-standby)NameNode。当活动的 NameNode 失效,备用 NameNode 会接管相应的任务,这一过程对用户透明。实现这一设计,需要在架构上做如下修改:
1. HA 的两个 NameNode 之间通过高可用共享存储实现编辑日志的共享,目的是为了能够使备用 NameNode 接管工作后实现与主 NameNode 状态同步。QJM(日志管理器,quorum journal manager)是为提供一个高可用的日志编辑而设计的,被推荐用于大多数 HDFS 集群中。QJM 以一组日志节点的形式运行,一般是 3,每一次编辑必须写入多数日志节点,因此系统可以忍受任何一个节点丢失,日志节点便是 JournalNode。
2. DataNode 需要同时向 2 个 NameNode 发送数据报告,因为数据块的映射信息存储在 NameNode 的内存中
3. 客户端需要处理 NameNode 失效的问题,对用户透明
HDFS的基本操作
命令行接口
命令行接口操作 HDFS 是最简单、最方便的方式。HDFS 的命令与 Linux 本地命令非常相似,可以通过 hadoop fs help 命令查看 HDFS 所支持所有命令,接下来介绍下常用的命令
hadoop fs -put <localsrc> <dst> #将本地文件上传至 HDFS
hadoop fs -ls <path> # 与 Linux ls命令类似
hadoop fs -cat <src> #查看 HDFS 文件数据
hadoop fs -text <path> # 同 cat 命令, 可以看 SequenceFile、压缩文件
hadoop fs -rm <src> # 删除 HDFS 文件或目录
以上是比较常用的 HDFS 命令,查看帮助文档可以在每个命令上增加一些命令行选项,输出不同的信息。以 ls 命令为例,看一下 HDFS 输出的文件信息
hadoop fs -ls /hadoop-ex/wordcount/input
-rw-r--r-- 3 root supergroup 32 2019-03-03 01:34 /hadoop-ex/wordcount/input/words
-rw-r--r-- 3 root supergroup 28 2019-03-03 01:46 /hadoop-ex/wordcount/input/words2
可以发现输出的内容与 Linux 下 ls 命令类似。第 1 部分显示文件类型与权限,第 2 部分是副本数量 3,第 3 、4部分是所属的用户和用户组,第 5 部分是文件大小,若是目录则为 0 ,第 6、7 部分是文件的修改日期和时间,第 8 部分是文件的路径和名称。 在 HDFS 中有个超级用户,即 启动 NameNode 的用户。
Java 接口
相对于命令行接口,Java接口更加灵活,更强大。但用起来不是很方便,一般可以在 MR 或者 Spark 任务中使用 Java 接口读取 HDFS 上的数据。本章仅举一个读取 HDFS 文件数据的例子介绍一下 Java 接口的使用方式,主要使用 FileSystem API 来实现,更具体和更多的使用方法读者可以自行查阅。
package com.cnblogs.duma.hdfs; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IOUtils; import java.io.IOException;
import java.io.InputStream;
import java.net.URI; public class FileSystemEx {
public static void main(String[] args) throws IOException {
Configuration conf = new Configuration();
// uri 便是 core-site.xml 文件中 fs.defaultFS 配置的值
FileSystem fs = FileSystem.get(URI.create("hdfs://hadoop0:9000"), conf);
InputStream in = null; try {
// 指定打开的文件
in = fs.open(new Path("/hadoop-ex/wordcount/input/words"));
// 将输入流拷贝到标准输出流
IOUtils.copyBytes(in, System.out, 4096, false);
} catch (IOException e) {
e.printStackTrace();
} finally {
// 关闭输入流
IOUtils.closeStream(in);
}
}
}
小结
本章主要介绍了 HDFS 的架构设计和一些重要的概念,这些设计上的东西可能对我们自己设计架构或者写代码会有帮助。所以,学习一个框架不光会用,更要注重他的架构设计,以及跟其他架构对比的优缺点,这对我们以后的成长有很大的帮助。最后花了少量篇幅介绍了 HDFS 的基本操作,这方便文档比较全,并且并不复杂,因此没有详细的介绍。个人认为 HDFS Java 接口应用场景相对有限,日后跟 HDFS 打交道更多的可能还是命令行接口。
大数据技术 - 分布式文件系统 HDFS 的设计的更多相关文章
- 【大数据】分布式文件系统HDFS 练习
作业要求来自于https://edu.cnblogs.com/campus/gzcc/GZCC-16SE2/homework/3292 利用Shell命令与HDFS进行交互 以”./bin/dfs d ...
- 大数据:Hadoop(HDFS 的设计思路、设计目标、架构、副本机制、副本存放策略)
一.HDFS 的设计思路 1)思路 切分数据,并进行多副本存储: 2)如果文件只以多副本进行存储,而不进行切分,会有什么问题 缺点 不管文件多大,都存储在一个节点上,在进行数据处理的时候很难进行并行处 ...
- 【转载】Hadoop分布式文件系统HDFS的工作原理详述
转载请注明来自36大数据(36dsj.com):36大数据 » Hadoop分布式文件系统HDFS的工作原理详述 转注:读了这篇文章以后,觉得内容比较易懂,所以分享过来支持一下. Hadoop分布式文 ...
- 【学习笔记】大数据技术原理与应用(MOOC视频、厦门大学林子雨)
1 大数据概述 大数据特性:4v volume velocity variety value 即大量化.快速化.多样化.价值密度低 数据量大:大数据摩尔定律 快速化:从数据的生成到消耗,时间窗口小,可 ...
- 大数据技术原理与应用——分布式文件系统HDFS
分布式文件系统概述 相对于传统的本地文件系统而言,分布式文件系统(Distribute File System)是一种通过网络实现文件在多台主机上进行分布式存储的文件系统.分布式文件系统的设计一般采用 ...
- 大数据 --> 分布式文件系统HDFS的工作原理
分布式文件系统HDFS的工作原理 Hadoop分布式文件系统(HDFS)是一种被设计成适合运行在通用硬件上的分布式文件系统.HDFS是一个高度容错性的系统,适合部署在廉价的机器上.它能提供高吞吐量的数 ...
- 大数据技术之Hadoop3.1.2版本完全分布式部署
大数据技术之Hadoop3.1.2版本完全分布式部署 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.主机环境准备 1>.操作系统环境 [root@node101.yinz ...
- 大数据技术之Hadoop3.1.2版本伪分布式部署
大数据技术之Hadoop3.1.2版本伪分布式部署 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.主机环境准备 1>.操作系统环境 [root@node101.yinzh ...
- 寻找丢失的微服务-HAProxy热加载问题的发现与分析 原创: 单既喜 一点大数据技术团队 4月8日 在一点资讯的容器计算平台中,我们通过HAProxy进行Marathon服务发现。本文记录HAProxy服务热加载后某微服务50%概率失效的问题。设计3组对比实验,验证了陈旧配置的HAProxy在Reload时没有退出进而导致微服务丢失,并给出了解决方案. Keywords:HAProxy热加
寻找丢失的微服务-HAProxy热加载问题的发现与分析 原创: 单既喜 一点大数据技术团队 4月8日 在一点资讯的容器计算平台中,我们通过HAProxy进行Marathon服务发现.本文记录HAPro ...
随机推荐
- SpringMvc + Jsp+ 富文本 kindeditor 进行 图片ftp上传nginx服务器 实现
一:html 原生态的附件上传 二:实现逻辑分析: 1.1.1 需求分析 Common.js 1.绑定事件 2.初始化参数 3.上传图片的url: /pic/upload 4.上图片参数名称: upl ...
- Confluence 6 中进行用户管理的优化配置和限制的基本建议
避免跨目录的多个用户名:如果你连接了超过一个的目录服务器,我们建议你需要确定你的用户名在目录服务器中是唯一的.例如:我们不建议你定义一个用户同时在'Directory1' 和 'Directory2' ...
- Eclipse+maven+scala+spark环境搭建
准备条件 我用的Eclipse版本 Eclipse Java EE IDE for Web Developers. Version: Luna Release (4.4.0) 我用的是Eclipse ...
- IO 多路复用
IO 多路复用 多路复用也是要用单线程来处理客户端并发,与其他模型相比多出了select这个模块. 程序不再直接问操作系统要数据,而是先发起一个select调用,select会阻塞直到其中某个sock ...
- ActiveMQ消息的发送原理
持久化消息和非持久化消息的发送策略:消息同步发送和异步发送 ActiveMQ支持同步.异步两种发送模式将消息发送到broker上.同步发送过程中,发送者发送一条消息会阻塞直到broker反馈一个确认消 ...
- Winhex数据恢复笔记(五)
一.上次介绍了Windows API函数,这次对Windows API函数的参数做个笔记 1.IpFileName: 文件名指针,也可指向 MS-Dos设备名,同时支持文件和设备名,函数分为两个版本 ...
- C++ StrCat()
关于StrCat function,参考:https://msdn.microsoft.com/en-us/library/windows/desktop/bb759925(v=vs.85).aspx ...
- spring-data-mongo的MongoTemplate开发
spring-data-mongo的MongoTemplate开发 1.在实体类Customer.Java中引入注解表明转换方式 @Document //文档 public class Custo ...
- JQuery 标签之间组合取值
<body> <div></div> <input type="text" value="first-1" /> ...
- Redis分布式锁(ServiceStack.Redis实现)
1.设计思路 由于Redis是单线程模型,命令操作原子性,所以利用这个特性可以很容易的实现分布式锁.A用户端在Resdis写入1个KEY,其他的用户无法写入这个KEY,实现锁的效果.A用户使用完成后释 ...