传送门


统计所有路径的边权乘积的乘积,不难想到点分治求解。

边权颜色比例在\([\frac{1}{2},2]\)之间,等价于\(2B \geq R , 2R \geq B\)(\(R,B\)表示红色和黑色的边的条数)

所以我们可以在统计的时候,先把所有可能的路径全部乘进答案,然后除掉满足\(2B < R\)或者\(2R < B\)的路径的乘积。显然对于一条路径,这两个条件至多满足一个。

对于两条路径,它们红色、黑色的边数分别为\(B_1,R_1\)和\(B_2,R_2\),那么需要统计的就是\(R_1 - 2B_1 > 2B_2 - R_2\)或者\(B_1 - 2R_1 > 2R_2 - B_2\)的路径的信息。可以使用树状数组维护。

#include<iostream>
#include<cstdio>
//This code is written by Itst
using namespace std; inline int read(){
int a = 0;
char c = getchar();
while(!isdigit(c))
c = getchar();
while(isdigit(c)){
a = a * 10 + c - 48;
c = getchar();
}
return a;
} #define PII pair < int , int >
#define st first
#define nd second
const int MAXN = 1e5 + 7 , MOD = 1e9 + 7; inline int poww(long long a , int b){
int times = 1;
while(b){
if(b & 1) times = times * a % MOD;
a = a * a % MOD;
b >>= 1;
}
return times;
} struct Edge{int end , upEd , w , col;}Ed[MAXN << 1];
int head[MAXN] , N , nowSz , minSz , minInd , sum , ans , cnt , cntEd;
bool vis[MAXN]; struct BIT{
#define lowbit(x) ((x) & -(x))
int BIT0[MAXN << 2] , BIT1[MAXN << 2];
BIT(){fill(BIT0 , BIT0 + (MAXN << 2) , 1);}
void add(int pos , int w , int tp){
pos += 2 * N + 1;
if(tp == -1) w = poww(w , MOD - 2);
while(pos <= (N + 1) << 2){
BIT0[pos] = 1ll * BIT0[pos] * w % MOD;
BIT1[pos] += tp;
pos += lowbit(pos);
}
}
PII get(int pos){
pos += 2 * N + 1;
int tms = 1 , sum = 0;
while(pos){
tms = 1ll * tms * BIT0[pos] % MOD;
sum += BIT1[pos];
pos -= lowbit(pos);
}
return PII(tms , sum);
}
}BIT1 , BIT2; inline void addEd(int a , int b , int c , int d){
Ed[++cntEd] = (Edge){b , head[a] , c , d};
head[a] = cntEd;
} void getSz(int x){
vis[x] = 1; ++nowSz;
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(!vis[Ed[i].end]) getSz(Ed[i].end);
vis[x] = 0;
} int getRt(int x){
vis[x] = 1;
int sz = 1 , maxSz = 0;
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(!vis[Ed[i].end]){
int t = getRt(Ed[i].end);
sz += t; maxSz = max(maxSz , t);
}
maxSz = max(maxSz , nowSz - sz);
if(minSz > maxSz){
minSz = maxSz;
minInd = x;
}
vis[x] = 0;
return sz;
} void addNd(int x , int w , int colR , int colB , int tp){
sum = 1ll * sum * w % MOD; ++cnt;
BIT1.add(2 * colR - colB , w , tp);
BIT2.add(2 * colB - colR , w , tp);
vis[x] = 1;
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(!vis[Ed[i].end])
addNd(Ed[i].end , 1ll * w * Ed[i].w % MOD , colR + Ed[i].col , colB + !Ed[i].col , tp);
vis[x] = 0;
} void qryNd(int x , int w , int colR , int colB){
if(2 * colB >= colR && 2 * colR >= colB)
ans = 1ll * ans * w % MOD;
ans = 1ll * ans * sum % MOD * poww(w , cnt) % MOD;
PII p = BIT1.get(colB - 2 * colR - 1) , q = BIT2.get(colR - 2 * colB - 1);
ans = 1ll * ans * poww(1ll * p.st * q.st % MOD * poww(w , p.nd + q.nd) % MOD , MOD - 2) % MOD;
vis[x] = 1;
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(!vis[Ed[i].end])
qryNd(Ed[i].end , 1ll * w * Ed[i].w % MOD , colR + Ed[i].col , colB + !Ed[i].col);
vis[x] = 0;
} void solve(int x){
nowSz = cnt = 0; sum = 1; minSz = 1e9;
getSz(x); getRt(x); x = minInd;
vis[x] = 1;
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(!vis[Ed[i].end]){
qryNd(Ed[i].end , Ed[i].w , Ed[i].col , !Ed[i].col);
addNd(Ed[i].end , Ed[i].w , Ed[i].col , !Ed[i].col , 1);
}
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(!vis[Ed[i].end])
addNd(Ed[i].end , Ed[i].w , Ed[i].col , !Ed[i].col , -1);
for(int i = head[x] ; i ; i = Ed[i].upEd)
if(!vis[Ed[i].end])
solve(Ed[i].end);
} int main(){
#ifndef ONLINE_JUDGE
freopen("in","r",stdin);
//freopen("out","w",stdout);
#endif
N = read();
for(int i = 1 ; i < N ; ++i){
int a = read() , b = read() , w = read() , col = read();
addEd(a , b , w , col); addEd(b , a , w , col);
}
ans = 1;
solve(1);
cout << ans;
return 0;
}

CF833D Red-Black Cobweb 点分治、树状数组的更多相关文章

  1. BZOJ_3262_陌上花开_CDQ分治+树状数组

    BZOJ_3262_陌上花开_CDQ分治+树状数组 Description 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),用三个整数表示. 现在要对每朵花评级,一朵花的级别是它拥有的 ...

  2. 【BZOJ4553】[Tjoi2016&Heoi2016]序列 cdq分治+树状数组

    [BZOJ4553][Tjoi2016&Heoi2016]序列 Description 佳媛姐姐过生日的时候,她的小伙伴从某宝上买了一个有趣的玩具送给他.玩具上有一个数列,数列中某些项的值可能 ...

  3. BZOJ 1176 Mokia CDQ分治+树状数组

    1176: [Balkan2007]Mokia Time Limit: 30 Sec  Memory Limit: 162 MBSubmit: 1854  Solved: 821[Submit][St ...

  4. 【bzoj3262】陌上花开 CDQ分治+树状数组

    题目描述 有n朵花,每朵花有三个属性:花形(s).颜色(c).气味(m),又三个整数表示.现要对每朵花评级,一朵花的级别是它拥有的美丽能超过的花的数量.定义一朵花A比另一朵花B要美丽,当且仅当Sa&g ...

  5. 【bzoj2225】[Spoj 2371]Another Longest Increasing CDQ分治+树状数组

    题目描述 给定N个数对(xi, yi),求最长上升子序列的长度.上升序列定义为{(xi, yi)}满足对i<j有xi<xj且yi<yj. 样例输入 8 1 3 3 2 1 1 4 5 ...

  6. BZOJ_2253_[2010 Beijing wc]纸箱堆叠 _CDQ分治+树状数组

    BZOJ_2253_[2010 Beijing wc]纸箱堆叠 _CDQ分治+树状数组 Description P 工厂是一个生产纸箱的工厂.纸箱生产线在人工输入三个参数 n p a , , 之后, ...

  7. BZOJ_3295_[Cqoi2011]动态逆序对_CDQ分治+树状数组

    BZOJ_3295_[Cqoi2011]动态逆序对_CDQ分治+树状数组 Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一 ...

  8. BZOJ_2225_[Spoj 2371]Another Longest Increasing_CDQ 分治+树状数组

    BZOJ_2225_[Spoj 2371]Another Longest Increasing_CDQ 分治+树状数组 Description        给定N个数对(xi, yi),求最长上升子 ...

  9. BZOJ_2683_简单题&&BZOJ_1176_[Balkan2007]Mokia_CDQ分治+树状数组

    BZOJ_2683_简单题&&BZOJ_1176_[Balkan2007]Mokia_CDQ分治+树状数组 Description 维护一个W*W的矩阵,初始值均为S.每次操作可以增加 ...

  10. BZOJ 2683 简单题 cdq分治+树状数组

    题意:链接 **方法:**cdq分治+树状数组 解析: 首先对于这道题,看了范围之后.二维的数据结构是显然不能过的.于是我们可能会考虑把一维排序之后还有一位上数据结构什么的,然而cdq分治却可以非常好 ...

随机推荐

  1. Android加载图片的策略

    实现图片缓存也不难,需要有相应的cache策略.这里我采用 内存-文件-网络 三层cache机制,其中内存缓存包括强引用缓存和软引用缓存(SoftReference),其实网络不算cache,这里姑且 ...

  2. Android 进度条按钮实现(ProgressButton)

    有些App在点击下载按钮的时候,可以在按钮上显示进度,我们可以通过继承原生Button,重写onDraw来实现带进度条的按钮. Github:https://github.com/imcloudflo ...

  3. WPF:Hyperlink如何绑定数据

    <TextBlock> <Hyperlink> <Run Text="{Binding PCFolderPath, Mode=OneWay}"/> ...

  4. springboot 学习之路 1(简单入门)

    目录:[持续更新.....] spring 部分常用注解 spring boot 学习之路1(简单入门) spring boot 学习之路2(注解介绍) spring boot 学习之路3( 集成my ...

  5. Spark数据倾斜及解决方案

    一.场景 1.绝大多数task执行得都非常快,但个别task执行极慢.比如,总共有100个task,97个task都在1s之内执行完了,但是剩余的task却要一两分钟.这种情况很常见. 2.原本能够正 ...

  6. 微信小程序中的循环遍历问题

    比如:如果在微信小程序中要遍历输出 0-9 的数,我们会使用for循环 ;i<;i++){ console.log(i); } 确实结果也是这样: 但是,如果我在循环时同时调用wx的api接口1 ...

  7. SQL Server中sys.syslogin中updatedate字段的浅析

    在系统视图sys.syslogins中,有createdate与updatedate两个字段,分别表示创建登录名与更新登录名的日期,如果你用updatedate的值来判断一个登录名的权限是否被修改过, ...

  8. [20180814]慎用查看表压缩率脚本.txt

    [20180814]慎用查看表压缩率脚本.txt --//最近看exadata方面书籍,书中提供1个脚本,查看某些表采用那些压缩模式压缩比能达到多少.--//通过调用DBMS_COMPRESSION. ...

  9. CentOS 6.5 搭建 .NET 环境, Mono 5.16.0 + Jexus 5.8

    最近有这样一个打算,就是准备把以前的有一个.NET 网站部署在Linux 下面,正好试试 .NET 跨平台的功能,为后续研究 .netCore 方向准备. 搭建环境: CentOS 6.5 + Mon ...

  10. Mysql --学习:大量数据快速导入导出

    声明:此文供学习使用,原文:https://blog.csdn.net/xiaobaismiley/article/details/41015783 [实验背景] 项目中需要对数据库中一张表进行重新设 ...