[转] Firewall and network filtering in libvirt
Firewall and network filtering in libvirt
There are three pieces of libvirt functionality which do network filtering of some type.
At a high level they are:
- The virtual network driver
This provides a isolated bridge device (ie no physical NICs enslaved). Guest TAP devices are attached to this bridge. Guests can talk to each other and the host, and optionally the wider world. - The QEMU driver MAC filtering
This provides a generic filtering of MAC addresses to prevent the guest spoofing its MAC address. This is mostly obsoleted by the next item, so won't be discussed further. - The network filter driver
This provides fully configurable, arbitrary network filtering of traffic on guest NICs. Generic rulesets are defined at the host level to control traffic in some manner. Rules sets are then associated with individual NICs of a guest. While not as expressive as directly using iptables/ebtables, this can still do nearly everything you would want to on a guest NIC filter.
The virtual network driver
The typical configuration for guests is to use bridging of the physical NIC on the host to connect the guest directly to the LAN. In RHEL6 there is also the possibility of using macvtap/sr-iov and VEPA connectivity. None of this stuff plays nicely with wireless NICs, since they will typically silently drop any traffic with a MAC address that doesn't match that of the physical NIC.
Thus the virtual network driver in libvirt was invented. This takes the form of an isolated bridge device (ie one with no physical NICs enslaved). The TAP devices associated with the guest NICs are attached to the bridge device. This immediately allows guests on a single host to talk to each other and to the host OS (modulo host IPtables rules).
libvirt then uses iptables to control what further connectivity is available. There are three configurations possible for a virtual network at time of writing:
- isolated: all off-node traffic is completely blocked
- nat: outbound traffic to the LAN is allowed, but MASQUERADED
- forward: outbound traffic to the LAN is allowed
The latter 'forward' case requires the virtual network be on a separate sub-net from the main LAN, and that the LAN admin has configured routing for this subnet. In the future we intend to add support for IP subnetting and/or proxy-arp. This allows for the virtual network to use the same subnet as the main LAN and should avoid need for the LAN admin to configure special routing.
Libvirt will optionally also provide DHCP services to the virtual network using DNSMASQ. In all cases, we need to allow DNS/DHCP queries to the host OS. Since we can't predict whether the host firewall setup is already allowing this, we insert 4 rules into the head of the INPUT chain
target prot opt in out source destination
ACCEPT udp -- virbr0 * 0.0.0.0/0 0.0.0.0/0 udp dpt:53
ACCEPT tcp -- virbr0 * 0.0.0.0/0 0.0.0.0/0 tcp dpt:53
ACCEPT udp -- virbr0 * 0.0.0.0/0 0.0.0.0/0 udp dpt:67
ACCEPT tcp -- virbr0 * 0.0.0.0/0 0.0.0.0/0 tcp dpt:67
Note we have restricted our rules to just the bridge associated with the virtual network, to avoid opening undesirable holes in the host firewall wrt the LAN/WAN.
The next rules depend on the type of connectivity allowed, and go in the main FORWARD chain:
- type=isolated
Allow traffic between guests. Deny inbound. Deny outbound.target prot opt in out source destination
ACCEPT all -- virbr1 virbr1 0.0.0.0/0 0.0.0.0/0
REJECT all -- * virbr1 0.0.0.0/0 0.0.0.0/0 reject-with icmp-port-unreachable
REJECT all -- virbr1 * 0.0.0.0/0 0.0.0.0/0 reject-with icmp-port-unreachable - type=nat
Allow inbound related to an established connection. Allow outbound, but only from our expected subnet. Allow traffic between guests. Deny all other inbound. Deny all other outbound.target prot opt in out source destination
ACCEPT all -- * virbr0 0.0.0.0/0 192.168.122.0/24 state RELATED,ESTABLISHED
ACCEPT all -- virbr0 * 192.168.122.0/24 0.0.0.0/0
ACCEPT all -- virbr0 virbr0 0.0.0.0/0 0.0.0.0/0
REJECT all -- * virbr0 0.0.0.0/0 0.0.0.0/0 reject-with icmp-port-unreachable
REJECT all -- virbr0 * 0.0.0.0/0 0.0.0.0/0 reject-with icmp-port-unreachable - type=routed
Allow inbound, but only to our expected subnet. Allow outbound, but only from our expected subnet. Allow traffic between guests. Deny all other inbound. Deny all other outbound.target prot opt in out source destination
ACCEPT all -- * virbr2 0.0.0.0/0 192.168.124.0/24
ACCEPT all -- virbr2 * 192.168.124.0/24 0.0.0.0/0
ACCEPT all -- virbr2 virbr2 0.0.0.0/0 0.0.0.0/0
REJECT all -- * virbr2 0.0.0.0/0 0.0.0.0/0 reject-with icmp-port-unreachable
REJECT all -- virbr2 * 0.0.0.0/0 0.0.0.0/0 reject-with icmp-port-unreachable - Finally, with type=nat, there is also an entry in the POSTROUTING chain to apply masquerading:
target prot opt in out source destination
MASQUERADE all -- * * 192.168.122.0/24 !192.168.122.0/24
The network filter driver
This driver provides a fully configurable network filtering capability that leverages ebtables, iptables and ip6tables. This was written by the libvirt guys at IBM and although its XML schema is defined by libvirt, the conceptual model is closely aligned with the DMTF CIM schema for network filtering:
http://www.dmtf.org/standards/cim/cim_schema_v2230/CIM_Network.pdf
The filters are managed in libvirt as a top level, standalone object. This allows the filters to then be referenced by any libvirt object that requires their functionality, instead tying them only to use by guest NICs. In the current implementation, filters can be associated with individual guest NICs via the libvirt domain XML format. In the future we might allow filters to be associated with the virtual network objects. Further we're expecting to define a new 'virtual switch' object to remove the complexity of configuring bridge/sriov/vepa networking modes. This make also end up making use of network filters.
There are a new set of virsh commands for managing network filters:
- virsh nwfilter-define
define or update a network filter from an XML file - virsh nwfilter-undefine
undefine a network filter - virsh nwfilter-dumpxml
network filter information in XML - virsh nwfilter-list
list network filters - virsh nwfilter-edit
edit XML configuration for a network filter
There are equivalently named C APIs for each of these commands.
As with all objects libvirt manages, network filters are configured using an XML format. At a high level the format looks like this:
<filter name='no-spamming' chain='XXXX'>
<uuid>d217f2d7-5a04-0e01-8b98-ec2743436b74</uuid> <rule ...>
....
</rule> <filterref filter='XXXX'/>
</filter>
Every filter has a name and UUID which serve as unique identifiers. A filter can have zero-or-more <rule>
elements which are used to actually define network controls. Filters can be arranged into a DAG, so zero-or-more <filterref/>
elements are also allowed. Cycles in the graph are not allowed.
The <rule>
element is where all the interesting stuff happens. It has three attributes, an action, a traffic direction and an optional priority. E.g.:
<rule action='drop' direction='out' priority='500'>
Within the rule there are a wide variety of elements allowed, which do protocol specific matching. Supported protocols currently include mac
, arp
, rarp
, ip
, ipv6
, tcp/ip
, icmp/ip
, igmp/ip
, udp/ip
, udplite/ip
, esp/ip
, ah/ip
, sctp/ip
, tcp/ipv6
, icmp/ipv6
, igmp/ipv6
, udp/ipv6
, udplite/ipv6
, esp/ipv6
, ah/ipv6
, sctp/ipv6
. Each protocol defines what is valid inside the <rule> element. The general pattern though is:
<protocol match='yes|no' attribute1='value1' attribute2='value2'/>
So, eg a TCP protocol, matching ports 0-1023 would be expressed as:
<tcp match='yes' srcportstart='0' srcportend='1023'/>
Attributes can included references to variables defined by the object using the rule. So the guest XML format allows each NIC to have a MAC address and IP address defined. These are made available to filters via the variables $IP
and $MAC
.
So to define a filter that prevents IP address spoofing we can simply match on source IP address != $IP
like this:
<filter name='no-ip-spoofing' chain='ipv4'>
<rule action='drop' direction='out'>
<ip match='no' srcipaddr='$IP' />
</rule>
</filter>
I'm not going to go into details on all the other protocol matches you can do, because it'll take far too much space. You can read about the options here.
Out of the box in RHEL6/Fedora rawhide, libvirt ships with a set of default useful rules:
# virsh nwfilter-list
UUID Name
----------------------------------------------------------------
15b1ab2b-b1ac-1be2-ed49-2042caba4abb allow-arp
6c51a466-8d14-6d11-46b0-68b1a883d00f allow-dhcp
7517ad6c-bd90-37c8-26c9-4eabcb69848d allow-dhcp-server
3d38b406-7cf0-8335-f5ff-4b9add35f288 allow-incoming-ipv4
5ff06320-9228-2899-3db0-e32554933415 allow-ipv4
db0b1767-d62b-269b-ea96-0cc8b451144e clean-traffic
f88f1932-debf-4aa1-9fbe-f10d3aa4bc95 no-arp-spoofing
772f112d-52e4-700c-0250-e178a3d91a7a no-ip-multicast
7ee20370-8106-765d-f7ff-8a60d5aaf30b no-ip-spoofing
d5d3c490-c2eb-68b1-24fc-3ee362fc8af3 no-mac-broadcast
fb57c546-76dc-a372-513f-e8179011b48a no-mac-spoofing
dba10ea7-446d-76de-346f-335bd99c1d05 no-other-l2-traffic
f5c78134-9da4-0c60-a9f0-fb37bc21ac1f no-other-rarp-traffic
7637e405-4ccf-42ac-5b41-14f8d03d8cf3 qemu-announce-self
9aed52e7-f0f3-343e-fe5c-7dcb27b594e5 qemu-announce-self-rarp
Most of these are just building blocks. The interesting one here is 'clean-traffic'. This pulls together all the building blocks into one filter that you can then associate with a guest NIC. This stops the most common bad things a guest might try, IP spoofing, arp spoofing and MAC spoofing. To look at the rules for any of these just do:
virsh nwfilter-dumpxml FILTERNAME|UUID
They are all stored in /etc/libvirt/nwfilter
, but don't edit the files there directly. Use virsh nwfilter-define
to update them. This ensures the guests have their iptables/ebtables rules recreated.
To associate the clean-traffic filter with a guest, edit the guest XML config and change the <interface>
element to include a <filterref>
and also specify the whitelisted <ip address/>
the guest is allowed to use:
<interface type='bridge'>
<mac address='52:54:00:56:44:32'/>
<source bridge='br1'/>
<ip address='10.33.8.131'/>
<target dev='vnet0'/>
<model type='virtio'/>
<filterref filter='clean-traffic'/>
</interface>
If no <ip address>
is included, the network filter driver will activate its 'learning mode'. This uses libpcap to snoop on network traffic the guest sends and attempts to identify the first IP address it uses. It then locks traffic to this address. Obviously this isn't entirely secure, but it does offer some protection against the guest being trojaned once up and running. In the future we intend to enhance the learning mode so that it looks for DHCPOFFERS from a trusted DHCP server and only allows the offered IP address to be used.
Now, how is all this implemented...?
The network filter driver uses a combination of ebtables, iptables and ip6tables, depending on which protocols are referenced in a filter. The out of the box 'clean-traffic' filter rules only require use of ebtables. If you want to do matching at tcp/udp/etc protocols (eg to add a new filter 'no-email-spamming' to block port 25), then iptables will also be used.
The driver attempts to keep its rules separate from those that the host admin might already have configured. So the first thing it does with ebtables, is to add two hooks in POSTROUTING and PREROUTING chains, to redirect traffic to custom chains. These hooks match on the TAP device name of the guest NIC, so they should not interact badly with any administrator defined rules:
Bridge chain: PREROUTING, entries: 1, policy: ACCEPT
-i vnet0 -j libvirt-I-vnet0 Bridge chain: POSTROUTING, entries: 1, policy: ACCEPT
-o vnet0 -j libvirt-O-vnet0
To keep things manageable and easy to follow, the driver will then create further sub-chains for each protocol then it needs to match against:
Bridge chain: libvirt-I-vnet0, entries: 5, policy: ACCEPT
-p IPv4 -j I-vnet0-ipv4
-p ARP -j I-vnet0-arp
-p 0x8035 -j I-vnet0-rarp
-p 0x835 -j ACCEPT
-j DROP Bridge chain: libvirt-O-vnet0, entries: 4, policy: ACCEPT
-p IPv4 -j O-vnet0-ipv4
-p ARP -j O-vnet0-arp
-p 0x8035 -j O-vnet0-rarp
-j DROP
Finally, here comes the actual implementation of the filters. This example shows the 'clean-traffic' filter implementation. I'm not going to explain what this is doing now. :-)
Bridge chain: I-vnet0-ipv4, entries: 2, policy: ACCEPT
-s ! 52:54:0:56:44:32 -j DROP
-p IPv4 --ip-src ! 10.33.8.131 -j DROP Bridge chain: O-vnet0-ipv4, entries: 1, policy: ACCEPT
-j ACCEPT Bridge chain: I-vnet0-arp, entries: 6, policy: ACCEPT
-s ! 52:54:0:56:44:32 -j DROP
-p ARP --arp-mac-src ! 52:54:0:56:44:32 -j DROP
-p ARP --arp-ip-src ! 10.33.8.131 -j DROP
-p ARP --arp-op Request -j ACCEPT
-p ARP --arp-op Reply -j ACCEPT
-j DROP Bridge chain: O-vnet0-arp, entries: 5, policy: ACCEPT
-p ARP --arp-op Reply --arp-mac-dst ! 52:54:0:56:44:32 -j DROP
-p ARP --arp-ip-dst ! 10.33.8.131 -j DROP
-p ARP --arp-op Request -j ACCEPT
-p ARP --arp-op Reply -j ACCEPT
-j DROP Bridge chain: I-vnet0-rarp, entries: 2, policy: ACCEPT
-p 0x8035 -s 52:54:0:56:44:32 -d Broadcast --arp-op Request_Reverse --arp-ip-src 0.0.0.0 --arp-ip-dst 0.0.0.0 --arp-mac-src 52:54:0:56:44:32 --arp-mac-dst 52:54:0:56:44:32 -j ACCEPT
-j DROP Bridge chain: O-vnet0-rarp, entries: 2, policy: ACCEPT
-p 0x8035 -d Broadcast --arp-op Request_Reverse --arp-ip-src 0.0.0.0 --arp-ip-dst 0.0.0.0 --arp-mac-src 52:54:0:56:44:32 --arp-mac-dst 52:54:0:56:44:32 -j ACCEPT
-j DROP
NB, we would have liked to include the prefix 'libvirt-' in all of our chain names, but unfortunately the kernel limits names to a very short maximum length. So only the first two custom chains can include that prefix. The others just include the TAP device name + protocol name.
If I define a new filter 'no-spamming' and then add this to the 'clean-traffic' filter, I can illustrate how iptables usage works:
# cat > /root/spamming.xml <<EOF
<filter name='no-spamming' chain='root'>
<uuid>d217f2d7-5a04-0e01-8b98-ec2743436b74</uuid>
<rule action='drop' direction='out' priority='500'>
<tcp dstportstart='25' dstportend='25'/>
</rule>
</filter>
EOF
# virsh nwfilter-define /root/spamming.xml
# virsh nwfilter-edit clean-traffic
...add <filterref filter='no-spamming'/>
All active guests immediately have their iptables/ebtables rules rebuilt.
The network filter driver deals with iptables in a very similar way. First it separates out its rules from those the admin may have defined, by adding a couple of hooks into the INPUT/FORWARD chains:
Chain INPUT (policy ACCEPT 13M packets, 21G bytes)
target prot opt in out source destination
libvirt-host-in all -- * * 0.0.0.0/0 0.0.0.0/0 Chain FORWARD (policy ACCEPT 5532K packets, 3010M bytes)
target prot opt in out source destination
libvirt-in all -- * * 0.0.0.0/0 0.0.0.0/0
libvirt-out all -- * * 0.0.0.0/0 0.0.0.0/0
libvirt-in-post all -- * * 0.0.0.0/0 0.0.0.0/0
These custom chains then do matching based on the TAP device name, so they won't open holes in the admin defined matches for the LAN/WAN (if any).
Chain libvirt-host-in (1 references)
target prot opt in out source destination
HI-vnet0 all -- * * 0.0.0.0/0 0.0.0.0/0 [goto] PHYSDEV match --physdev-in vnet0 Chain libvirt-in (1 references)
target prot opt in out source destination
FI-vnet0 all -- * * 0.0.0.0/0 0.0.0.0/0 [goto] PHYSDEV match --physdev-in vnet0 Chain libvirt-in-post (1 references)
target prot opt in out source destination
ACCEPT all -- * * 0.0.0.0/0 0.0.0.0/0 PHYSDEV match --physdev-in vnet0 Chain libvirt-out (1 references)
target prot opt in out source destination
FO-vnet0 all -- * * 0.0.0.0/0 0.0.0.0/0 [goto] PHYSDEV match --physdev-out vnet0
Finally, we can see the interesting bit which is the actual implementation of my filter to block port 25 access:
Chain FI-vnet0 (1 references)
target prot opt in out source destination
DROP tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:25 Chain FO-vnet0 (1 references)
target prot opt in out source destination
DROP tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp spt:25 Chain HI-vnet0 (1 references)
target prot opt in out source destination
DROP tcp -- * * 0.0.0.0/0 0.0.0.0/0 tcp dpt:25
One thing in looking at this you may notice is that if there are many guests all using the same filters, we will be duplicating the iptables rules over and over for each guest. This is merely a limitation of the current rules engine implementation. At the libvirt object modelling level you can clearly see we've designed the model so filter rules are defined in one place, and indirectly referenced by guests. Thus it should be possible to change the implementation in the future so we can share the actual iptables/ebtables rules for each guest to create a more scalable system. The stuff in current libvirt is more or less the very first working implementation we've had of this, so there's not been much optimization work done yet.
Also notice that at the XML level we don't expose the fact we are using iptables or ebtables at all. The rule definition is done in terms of network protocols. Thus if we ever find a need, we could plug in an alternative implementation that calls out to a different firewall implementation instead of ebtables/iptables (providing that implementation was suitably expressive of course)
Finally, in terms of problems we have in deployment. The biggest problem is that if the admin does service iptables restart
all our work gets blown away. We've experimented with using lokkit to record our custom rules in a persistent config file, but that caused different problem. Admins who were not using lokkit for their config found that all their own rules got blown away. So we threw away our lokkit code. Instead we document that if you run service iptables restart
, you need to send SIGHUP to libvirt to make it recreate its rules.
More in depth documentation on this is here.
[转] Firewall and network filtering in libvirt的更多相关文章
- 别以为真懂Openstack: 虚拟机创建的50个步骤和100个知识点(4)
六.Libvirt 对于Libvirt,在启动虚拟机之前,首先需要define虚拟机,是一个XML格式的文件 列出所有的Instance # virsh list Id Name ...
- virt-install详解
man virt-install VIRT-INSTALL() Virtual Machine Manager VIRT-INSTALL() NAME virt-install - provision ...
- KVM命令参数
# virt-install --help usage: virt-install --name NAME --memory MB STORAGE INSTALL [options] 从指定安装源创建 ...
- Neutron 理解 (9): OpenStack 是如何实现 Neutron 网络 和 Nova虚机 防火墙的 [How Nova Implements Security Group and How Neutron Implements Virtual Firewall]
学习 Neutron 系列文章: (1)Neutron 所实现的虚拟化网络 (2)Neutron OpenvSwitch + VLAN 虚拟网络 (3)Neutron OpenvSwitch + GR ...
- 干货分享: 长达250页的Libvirt Qemu KVM的ppt,不实验无真相
下载地址:Libvirt Qemu KVM 教程大全 http://files.cnblogs.com/popsuper1982/LibvirtQemuKVM.pptx 1. 概论 1.1 虚拟化的基 ...
- Cyber Security - Palo Alto Firewall Security Zones
Firewall Security Zones Zones: The foundational aspect of every Firewall. Police network traffic Enf ...
- Iaas-cloudstack
http://cloudstack.apt-get.eu/systemvm/4.6/ 模板地址 http://cloudstack.apt-get.eu/centos7/4.6/ 代理及管理地址 ht ...
- OpenStack:安装Nova
>安装Nova1. 安装# apt-get install nova-novncproxy novnc nova-api \ nova-ajax-console-proxy nova-cert ...
- ping vs telnet, what is the difference between them and when to use which?
Ping is an ICMP protocol. Basically any system with TCP/IP could respond to ICMP calls if they were ...
随机推荐
- Python校验文件MD5值
import hashlib import os def GetFileMd5(filename): if not os.path.isfile(filename): return myHash = ...
- Spring 文件上传MultipartFile 执行流程分析
在了解Spring 文件上传执行流程之前,我们必须知道两点: 1.Spring 文件上传是基于common-fileUpload 组件的,所以,文件上传必须引入此包 2.Spring 文件上传需要在X ...
- Swift Realm 完整使用记录
新项目用到了数据库,本来之前用的都是 SQL,但是语法写的实在是恶心,所以使用 Realm 尝试一下. 1.我使用的 pod 库,所以先 pod 库安装一下,安装完别忘了先编译一下,不然 import ...
- abap 常用TCODE
ABAP: 通过查询表TSTC或者TSTCT:SAP系统将所有的事务代码都存储在这个表中,包括字开发的Y*和Z* TCODE 事务代码功能描述 CG3Y 下载服务器上文件 CG3Z upload fi ...
- Solidity知识点集 — 溢出和下溢
合约安全增强: 溢出和下溢 什么是 溢出 (overflow)? 假设我们有一个 uint8, 只能存储8 bit数据.这意味着我们能存储的最大数字就是二进制 11111111 (或者说十进制的 2^ ...
- ionic3自定义android原生插件
一.创建一个android项目,编写插件功能,并测试ok,这里以一个简单的调用原生Toast.makeText为例. 1.新建android项目 2.编写插件类 package com.plugin. ...
- 自学elastic search
工作也有一段时间了,虽然来这个公司之后学会了几门不同的语言,但想拨尖还是任重道远. 想往高级程序员甚至是架构师方向发展.他仍然是我的学习对象.我现在做着的,无非是他玩剩下的罢了. luncene之前有 ...
- struts1.x 核心控制器 和 用户自定义控制器扩展类;
ServletAction继承于HttpServlet,是struts1.x中和核心控制器. 配置于web.xml文件中,指定config属性,该config属性用于指定formBean和action ...
- linux ssh反向代理
参考:https://segmentfault.com/a/1190000002718360 内外运行:sshpass -p 123456 ssh -fNR 5000:localhost:22 ser ...
- Scania SDP3 2.38.2.37.0 Download, Install, Activate: Confirmed
Download: Scania Diagnos & Programmer SDP3 2.38.2.37.0 free version and tested version SDP3 2.38 ...