这怎么想得到啊.........

UOJ #36

题意:求随机一个集合的子集的异或和的$k$次方的期望值,保证答案$ \lt 2^{63},1 \leq k \leq 5$


$ Solution:$

首先考虑$ k=1$的时候怎么做:如果某位上有$ 1$则有$ \frac{1}{2}$的概率可以取到这一位

$ k=1$时每一位都是独立的,可以直接做

然后考虑$ k=2$时怎么做

如果一个集合中有元素$ a,b$,则产生的贡献为$ a^2+2ab+b^2$

我们把$ a^2$和$2ab$分开讨论

如果某位有$ 1$,则有$ \frac{1}{4}$的概率取到$ a^2$

如果某两个不同的位均有$ 1$,则有$ \frac{1}{4}$的概率取到$ 2ab$

注意如果这两个不同的位只能一起被取,这个概率将被改成$ \frac{1}{2}$

然后考虑$ 3 \leq k \leq 5$时怎么做

发现产生任何一个能够被原集合的若干个数异或和表示的数都是等概率

因此我们只需要保留原集合的线性基即可

由于答案$ \lt 2^{63}$,能产生的最大的数并不大,大约为$ \sqrt[k]{2^{63}}$级别

因此能表示出的数的数量大致也是这个级别的

建出线性基之后爆搜每个数并统计答案

注意中间计算过程中可能会爆$ long \ long$可能需要手写压位或$int128$


$ my \ code(int128)$

#include<ctime>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#include<queue>
#define rt register int
#define ll long long
using namespace std;
inline ll read(){
ll x = ; char zf = ; char ch = getchar();
while (ch != '-' && !isdigit(ch)) ch = getchar();
if (ch == '-') zf = -, ch = getchar();
while (isdigit(ch)) x = x * + ch - '', ch = getchar(); return x * zf;
}
void write(ll y){if(y<)putchar('-'),y=-y;if(y>)write(y/);putchar(y%+);}
void writeln(const ll y){write(y);putchar('\n');}
int i,j,k,m,n,x,y,z;unsigned ll cnt,c[],a[];
namespace subtask1{
bool b[];
void main(){
ll ans=;
for(rt i=;i<=n;i++)for(rt j=;j<=;j++)if(a[i]>>j&)b[j]=;
for(rt j=;j<=;j++)if(b[j])cnt+=(unsigned ll)<<j;
cout<<(cnt/);if(cnt%)cout<<".5";
}
}
namespace subtask2{
bool b1[][],b2[][],b[];
void main(){
__int128 ans=;
for(rt i=;i<=n;i++)
for(rt j=;j<=;j++)
for(rt k=;k<=;k++)if(j!=k){
if(a[i]>>j&){
if(a[i]>>k&)b1[j][k]=;else b2[j][k]=;
b[j]=;
}
}
for(rt i=;i<=;i++)
for(rt j=i+;j<=;j++){
__int128 all=;
if(b1[i][j])all=;
if(b1[i][j]&&(b2[i][j]||b2[j][i]))all=;
if(b2[i][j]&&b2[j][i])all=;
if(all)
ans+=all**(1ll<<i)*(1ll<<j);
}
for(rt i=;i<=;i++)if(b[i])ans+=(unsigned ll)*(1ll<<i)*(1ll<<i);
ans/=;write(ans/);
if(ans&)cout<<".5";
}
}
namespace subtask3{
__int128 ans;
__int128 mi(__int128 x,int y){
__int128 ans=;
for(rt i=;i<=y;i++)ans*=x;
return ans;
}
void dfs(int x,__int128 y){
if(x>n){
ans+=mi(y,m);
return;
}
dfs(x+,y);dfs(x+,y^a[x]);
}
void main(){
ans=;dfs(,);
for(rt i=;i<n;i++)ans/=;
write(ans/);if(ans&)cout<<".5";
}
}
int main(){
n=read();m=read();
for(rt i=;i<=n;i++){
ll x=read();
for(rt j=;j>=;j--)if(x>>j&){
if(c[j])x^=c[j];
else {
c[j]=x;
break;
}
}
}
n=;
for(rt i=;i<=;i++)if(c[i])a[++n]=c[i];
if(m==)subtask1::main();
if(m==)subtask2::main();
if(m>=)subtask3::main();
return ;
}

UOJ #36「清华集训2014」玛里苟斯的更多相关文章

  1. UOJ #36 -【清华集训2014】玛里苟斯(线性基+暴搜)

    UOJ 题面传送门 看到 \(k\) 次方的期望可以很自然地想到利用低次方和维护高次方和的套路进行处理,不过.由于这里的 \(k\) 达到 \(5\),直接这么处理一来繁琐,二来会爆 long lon ...

  2. [UOJ]#36. 【清华集训2014】玛里苟斯

    题目大意:给n个数字,求子集的异或和的k次方的期望(n<=10^5,k<=5,保证答案小于2^63) 做法:首先如果从集合中拿出a和b,把a和a xor b放回集合,子集的异或和与原来是一 ...

  3. UOJ#36. 【清华集训2014】玛里苟斯 线性基

    原文链接https://www.cnblogs.com/zhouzhendong/p/UOJ36.html 题解 按照 $k$ 分类讨论: k=1 : 我们考虑每一位的贡献.若有至少一个数第 $i$ ...

  4. uoj#36. 【清华集训2014】玛里苟斯(线性基+概率期望)

    传送门 为啥在我看来完全不知道为什么的在大佬们看来全都是显然-- 考虑\(k=1\)的情况,如果序列中有某一个\(a_j\)的第\(i\)位为\(1\),那么\(x\)的第\(i\)位为\(1\)的概 ...

  5. UOJ #276「清华集训2016」汽水

    为什么你们常数都这么小啊 UOJ #276 题意:在树上找一条链使得|边权平均值$ -k$|尽量小,$ n<=5e4$ $ Solution:$ 首先二分答案$ ans$,即我们需要找一条链使得 ...

  6. UOJ #2321. 「清华集训 2017」无限之环

    首先裂点表示四个方向 一条边上都有插头或者都不有插头,相当于满足流量平衡 最大流 = 插头个数*2时有解 然后求最小费用最大流 黑白染色分别连原点汇点

  7. Loj #2331. 「清华集训 2017」某位歌姬的故事

    Loj #2331. 「清华集训 2017」某位歌姬的故事 IA 是一名会唱歌的女孩子. IOI2018 就要来了,IA 决定给参赛选手们写一首歌,以表达美好的祝愿.这首歌一共有 \(n\) 个音符, ...

  8. Loj #2324. 「清华集训 2017」小 Y 和二叉树

    Loj #2324. 「清华集训 2017」小 Y 和二叉树 小Y是一个心灵手巧的OIer,她有许多二叉树模型. 小Y的二叉树模型中,每个结点都具有一个编号,小Y把她最喜欢的一个二叉树模型挂在了墙上, ...

  9. Loj #2321. 「清华集训 2017」无限之环

    Loj #2321. 「清华集训 2017」无限之环 曾经有一款流行的游戏,叫做 *Infinity Loop***,先来简单的介绍一下这个游戏: 游戏在一个 \(n \times m\) 的网格状棋 ...

随机推荐

  1. django 前端 js让一段文本中包含的网址可以被访问

    这个功能还是挺刚需的,下面说说实现过程,用到了正则表达式. 1.原本的html部分代码: <h4 id="softadd">链接: https://pan.baidu. ...

  2. __int128

    __int128 __uint128 __int128_t __uint128_t 大小:16字节 2^128(sizeof()) 2^128 39位 340282366920938463463374 ...

  3. Day9--Python--函数入门

    函数神马是函数: 函数是对功能或动作的封装函数的定义: def 函数名(形参列表): #参数 函数体(return) 调用: ret = 函数名(实参列表) 函数名就是变量名: 函数名的命名规则:变量 ...

  4. c#反射(1)

    反射可以读取程序集中代码的内容,程序集一般指(dll或exe文件). 反射中Type类,这个类太强大了,可以获取到另一个类的名称,命名空间,程序集,以及这个类中的字段,属性,方法.可以方便我们查看某个 ...

  5. Django+Uwsgi+Nginx

    一.数据库准备 yum install mariadb-server -y systemctl start mariadb   监听端口 netstat -lntup   mysql 进入 grant ...

  6. qt: 打不开png图像以及opencv加载中文路径问题;

    经过亲测, QT(版本: 5.9.4)提供的QImageReader或者函数load在加载本地png图像时,均会提示失败, 按照网上的方法,将Qt plugins下的imageformats 拷贝到e ...

  7. bzoj1009 KMP+矩阵dp

    https://www.lydsy.com/JudgeOnline/problem.php?id=1009 阿申准备报名参加GT考试,准考证号为N位数X1X2....Xn(<=Xi<=), ...

  8. 记一次给自己的本子更换一个SSD盘

    记一次给自己的本子更换一个SSD盘 关于笔记本电脑:特别讨厌联想的本子(个人习惯:键盘超级硬-按着手疼)dell的可以考虑一下,不过如果我推荐的话:小米的本子还是可以考虑一下的一般买的话建议买6000 ...

  9. win10默认壁纸位置

    win10默认壁纸的位置... --------- win10默认壁纸位置C:\Windows\Web\4K\Wallpaper\Windows win10 默认 锁屏壁纸C:\Windows\Web ...

  10. JAVA核心技术I---JAVA基础知识(回顾)

    一:对象实例化问题: public class Rectangle { ; ; public int area() { return width * height; } } 则如下代码输出结果为: R ...