题目描述

幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果。但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的多,于是在分配糖果的时候,lxhgww需要满足小朋友们的K个要求。幼儿园的糖果总是有限的,lxhgww想知道他至少需要准备多少个糖果,才能使得每个小朋友都能够分到糖果,并且满足小朋友们所有的要求。

输入输出格式

输入格式:

输入的第一行是两个整数N,K。接下来K行,表示这些点需要满足的关系,每行3个数字,X,A,B。如果X=1, 表示第A个小朋友分到的糖果必须和第B个小朋友分到的糖果一样多;如果X=2, 表示第A个小朋友分到的糖果必须少于第B个小朋友分到的糖果;如果X=3, 表示第A个小朋友分到的糖果必须不少于第B个小朋友分到的糖果;如果X=4, 表示第A个小朋友分到的糖果必须多于第B个小朋友分到的糖果;如果X=5, 表示第A个小朋友分到的糖果必须不多于第B个小朋友分到的糖果;

输出格式:

输出一行,表示lxhgww老师至少需要准备的糖果数,如果不能满足小朋友们的所有要求,就输出-1。

输入输出样例

输入样例#1:

5 7
1 1 2
2 3 2
4 4 1
3 4 5
5 4 5
2 3 5
4 5 1
输出样例#1:

11

说明

【数据范围】

对于30%的数据,保证 N<=100

对于100%的数据,保证 N<=100000

对于所有的数据,保证 K<=100000,1<=X<=5,1<=A, B<=N

话说出题人真是用(sang)心(xin)良(bing)苦(kuang)

差分约束卡SPFA。。

我还能说什么。。

=.=、、、、、、

 #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<queue>
#include<algorithm>
#include<cstdlib>
#define lli int
using namespace std;
const int MAXN=;
inline void read(int &n)
{
char c='+';int x=,flag=;
while(c<''||c>'')
{c=getchar();if(c=='-')flag=-;}
while(c>=''&&c<='')
{x=x*+c-;c=getchar();}
n=(x*flag);
}
int n,m;
struct node
{
int u,v,w,nxt;
}edge[MAXN];
int head[MAXN];
int num=;
inline void no_ans()
{
printf("-1");
exit();
}
inline void add_edge(int x,int y,int z)
{
edge[num].u=x;
edge[num].v=y;
edge[num].w=z;
edge[num].nxt=head[x];
head[x]=num++;
}
int dis[MAXN];
int vis[MAXN];
int happen[MAXN];
inline bool SPFA(int p)
{
if(happen[p]>n)
no_ans();
vis[p]=;
for(register int i=head[p];i!=-;i=edge[i].nxt)
{
if(dis[edge[i].v]>dis[edge[i].u]+edge[i].w)
{
dis[edge[i].v]=dis[edge[i].u]+edge[i].w;
happen[edge[i].v]++;
if(vis[edge[i].v]||!SPFA(edge[i].v))
return false;
}
}
vis[p]=;
return true;
}
int main()
{
memset(dis,0x3f,sizeof(dis));
memset(head,-,sizeof(head));
read(n);read(m);
for(register int i=n;i>=;--i)
add_edge(,i,-);
for(register int i=;i<=m;++i)
{
int how,a,b;
read(how);read(a);read(b);
if(how==)
{
add_edge(b,a,);add_edge(a,b,);
}
else if(how==)
{
if(a==b)no_ans();
add_edge(a,b,-);
}
else if(how==)
add_edge(b,a,);
else if(how==)
add_edge(b,a,-);
else if(how==)
add_edge(a,b,);
}
dis[]=;
long long int ans=;
if(SPFA())
{
for(register int i=;i<=n;++i)
ans-=dis[i];
}
else no_ans();
printf("%lld",ans);
return ;
}

P3275 [SCOI2011]糖果的更多相关文章

  1. [luogu P3275] [SCOI2011]糖果

    [luogu P3275] [SCOI2011]糖果 题目描述 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些 ...

  2. P3275 [SCOI2011]糖果 && 差分约束(二)

    学习完了差分约束是否有解, 现在我们学习求解最大解和最小解 首先我们回想一下是否有解的求解过程, 不难发现最后跑出来任意两点的最短路关系即为这两元素的最短路关系. 即: 最后的最短路蕴含了所有元素之间 ...

  3. 洛谷——P3275 [SCOI2011]糖果

    P3275 [SCOI2011]糖果 差分约束模板题,基本思路就是$d[v]+w[v,u]<=d[u]$,$Spfa$更新方法, 有点套路的是要建立原点,即图中不存在的点来向每个点加边,但同样这 ...

  4. 洛谷P3275 [SCOI2011]糖果 [差分约束系统]

    题目传送门 糖果 题目描述 幼儿园里有N个小朋友,lxhgww老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果.但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比 ...

  5. 【POJ 3159】Candies&&洛谷P3275 [SCOI2011]糖果

    来补一下自己很久以前那个很蒟蒻很蒟蒻的自己没有学懂的知识 差分约束,说白了就是利用我们在求最短路的一个\(relax\)操作时的判断的原理 \[dis[v]>dis[u]+disj(u,v)\] ...

  6. 题解——洛谷P3275 [SCOI2011]糖果

    一道条件非常多的差分约束 把\( a < b \)转化为\( a-b \le -1\)就可做了 \( a>b \)的情况同理 若有负环则无解输出-1 注意本题中要求每个人都有糖果 所以假设 ...

  7. 【luogu P3275 [SCOI2011]糖果】 题解

    题目链接:https://www.luogu.org/problemnew/show/P3275 把不等式 A > B 转化成 A - B >= 1或者 B - A <= -1再差分 ...

  8. 洛谷P3275 [SCOI2011]糖果 题解

    题目链接: https://www.luogu.org/problemnew/show/P3275 分析: 本题就是一个裸的差分约束. 核心: x=1x=1x=1时,a=b,a−>b,b−> ...

  9. P3275 [SCOI2011]糖果 题解

    一道差分约束的模板题. 题目 题意:n个人每个人至少一个糖果,另外要满足k个不等式,求最少糖果数. 差分约束系统 给定一组不等式 $ x[i]-x[j]<=c[k] $ (或 $ x[i]-x[ ...

随机推荐

  1. Maven 项目打包出现错误 Failed to execute goal org.apache.maven.plugins:maven-resources-plugin

    今天碰到一个奇怪的问题,就是我在eclipse中使用maven命令:clean package 命令打完包之后,通过FlashFXP将jar包上传到Linux服务器后,由于其他原因,我想要修改下程序重 ...

  2. Git的初步学习

    前言 感谢! 承蒙关照~ Git的初步学习 为什么要用Git和Github呢?它们的出现是为了用于提交项目和存储项目的,是一种很方便的项目管理软件和网址地址. 接下来看看,一家公司的基本流程图: 集中 ...

  3. 把ajax包装成promise的形式(1)

    概述 为了体验promise的原理,我打算自己把ajax包装成promise的形式.主要希望实现下列功能: // 1.使用success和error进行链式调用,并且可以在后面加上无限个 promis ...

  4. vue2.0 新手教程(一)

    想想自己写vue的项目也写了一年了,从vue1.0到2.0,走过不少路,填过不少坑, 下面记录一下新手从0到1的过程,本文“应该”会持续更新 首先安装vue的运行环境node 1.下载Nodejs并安 ...

  5. 增删改查Spring+MyBatis

    其实这次写这个增删改查,我的收获很大,在同学的帮助下和老师的推动下,我也是学会了很多的技能点. 1.显示数据 显示数据对我而言可以说很好做,因为我以前增删改查做了有N遍,但是我却每次都是无功而返,半途 ...

  6. MFCC特征参数提取流程概述

      一 概念概述: 在语音识别(Speech Recognition)和话者识别(Speaker Recognition)方面,最常用到的语音特征就是梅尔倒谱系数(Mel-scale Frequenc ...

  7. Java多线程之一

    进程与线程 进程 进程是进程实体的运行过程,是系统进行资源分配和调度的一个独立单位,比如我们windows电脑上运行的一个程序就是一个进程.在传统进程中进程是资源分配和调度的一个基本单位,在后来引入线 ...

  8. leetcode — jump-game

    /** * Source : https://oj.leetcode.com/problems/jump-game/ * * Created by lverpeng on 2017/7/17. * * ...

  9. LINUX LVM和快照卷配置和管理

    具体参考这个文章把: http://www.cnblogs.com/zhaojiedi1992/p/zhaojiedi_linux_042_lvm.html 1.LVM是什么 逻辑卷管理LVM是一个多 ...

  10. kubelet集群网络配置flannel(覆盖网络)

    kubernetes本身并不会对跨主机容器的网络进行设置,这需要额外的工具来实现.一些常用的开源工具主要包括flanne.OpenvSwitch.Weave.Calico等,这里面最常用的是flann ...