Elasticsearch - Scroll
Scroll
Version:6.1
英文原文地址:Scroll
当一个搜索请求返回单页结果时,可以使用 scroll API 检索体积大量(甚至全部)结果,这和在传统数据库中使用游标的方式非常相似。
不要把 scroll
用于实时请求,它主要用于大数据量的场景。例如:将一个索引的内容索引到另一个不同配置的新索引中。
Client support for scrolling and reindexing
一些官方支持的客户端提供了一些辅助类,可以协助滚动搜索和索引之间的文档重索引:
Perl
参阅 Search::Elasticsearch::Client::5_0::Bulk 和 Search::Elasticsearch::Client::5_0::Scroll
Python
NOTE:从 scroll 请求返回的结果反映了初始搜素请求生成时的索引状态,就像时间快照一样。对文档的更改(索引、更新或者删除)只会影响以后的搜索请求。
为了使用 scroll ,初始的搜索请求应该在查询字符串中指定 scroll
参数,这个参数会告诉 Elasticsearch 将 “search context” 保存多久。例如:?scroll=1m
POST /twitter/tweet/_search?scroll=1m
{
"size": 100,
"query": {
"match" : {
"title" : "elasticsearch"
}
}
}
上面的请求返回的结果里会包含一个 _scroll_id
,我们需要把这个值传递给 scroll
API ,用来取回下一批结果。
POST (1) /_search/scroll (2)
{
"scroll" : "1m", (3)
"scroll_id" : "DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAD4WYm9laVYtZndUQlNsdDcwakFMNjU1QQ==" (4)
}
(1) GET
或者 POST
都可以
(2) URL 不能包含 index
和 type
名称,原始请求中已经指定了
(3) scroll
参数告诉 Elasticsearch 把搜索上下文再保持一分钟
(4) scroll_id
的值就是上一个请求中返回的 _scroll_id
的值
size
参数允许我们配置没批结果返回的最大命中数。每次调用 scroll API 都会返回下一批结果,直到不再有可以返回的结果,即命中数组为空。
IMPORTANT:初始的搜索请求和每个 scroll 请求都会返回一个新的
_scroll_id
,只有最近的_scroll_id
是可用的
NOTE:如果请求指定了过滤,就只有初始搜索的响应中包含聚合结果。
NOTE:Scroll 请求对
_doc
排序做了优化。如果要遍历所有的文档,而且不考虑顺序,_doc
是最高效的选项。
GET /_search?scroll=1m
{
"sort": [
"_doc"
]
}
Keeping the search context alive
scroll
参数告诉了 Elasticsearch 应当保持搜索上下文多久。它的值不需要长到能够处理完所有的数据,只要足够处理前一批结果就行了。每个 scroll 请求都会设置一个新的过期时间。
通常,为了优化索引,后台合并进程会把较小的段合并在一起创建出新的更大的段,此时会删除较小的段。这个过程在 scrolling 期间会继续进行,但是一个打开状态的索引上下文可以防止旧段在仍需要使用时被删除。这就解释了 Elasticsearch 为什么能够不考虑对文档的后续修改,而返回初始搜索请求的结果。
TIP:使旧段保持活动状态意味着需要更多的文件句柄。请确保你已将节点配置为拥有足够的可用的文件句柄。详情参阅 File Descriptors
你可以使用 nodes stats API 查看有多少搜索上下文处于开启状态
GET /_nodes/stats/indices/search
Clear scroll API
当超出了 scroll timeout
时,搜索上下文会被自动删除。但是,保持 scrolls 打开是有成本的,当不再使用 scroll 时应当使用 clear-scroll
API 进行显式清除。
DELETE /_search/scroll
{
"scroll_id" : "DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAD4WYm9laVYtZndUQlNsdDcwakFMNjU1QQ=="
}
可以使用数组传递多个 scroll ID
DELETE /_search/scroll
{
"scroll_id" : [
"DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAD4WYm9laVYtZndUQlNsdDcwakFMNjU1QQ==",
"DnF1ZXJ5VGhlbkZldGNoBQAAAAAAAAABFmtSWWRRWUJrU2o2ZExpSGJCVmQxYUEAAAAAAAAAAxZrUllkUVlCa1NqNmRMaUhiQlZkMWFBAAAAAAAAAAIWa1JZZFFZQmtTajZkTGlIYkJWZDFhQQAAAAAAAAAFFmtSWWRRWUJrU2o2ZExpSGJCVmQxYUEAAAAAAAAABBZrUllkUVlCa1NqNmRMaUhiQlZkMWFB"
]
}
使用 _all
参数清除所有的搜索上下文
DELETE /_search/scroll/_all
也可以使用 query string 参数传递 scroll_id
,多个值使用英文逗号分割
DELETE /_search/scroll/DXF1ZXJ5QW5kRmV0Y2gBAAAAAAAAAD4WYm9laVYtZndUQlNsdDcwakFMNjU1QQ==,DnF1ZXJ5VGhlbkZldGNoBQAAAAAAAAABFmtSWWRRWUJrU2o2ZExpSGJCVmQxYUEAAAAAAAAAAxZrUllkUVlCa1NqNmRMaUhiQlZkMWFBAAAAAAAAAAIWa1JZZFFZQmtTajZkTGlIYkJWZDFhQQAAAAAAAAAFFmtSWWRRWUJrU2o2ZExpSGJCVmQxYUEAAAAAAAAABBZrUllkUVlCa1NqNmRMaUhiQlZkMWFB
Sliced Scroll
如果 scroll 查询返回的文档数量过多,可以把它们拆分成多个切片以便独立使用
GET /twitter/tweet/_search?scroll=1m
{
"slice": {
"id": 0, (1)
"max": 2 (2)
},
"query": {
"match" : {
"title" : "elasticsearch"
}
}
}
GET /twitter/tweet/_search?scroll=1m
{
"slice": {
"id": 1,
"max": 2
},
"query": {
"match" : {
"title" : "elasticsearch"
}
}
}
(1) 切片的 id
(2) 最大切片数量
上面的栗子,第一个请求返回的是第一个切片(id : 0)的文档,第二个请求返回的是第二个切片的文档。因为我们设置了最大切片数量是 2 ,所以两个请求的结果等价于一次不切片的 scroll 查询结果。默认情况下,先在第一个分片(shard)上做切分,然后使用以下公式:slice(doc) = floorMod(hashCode(doc._uid), max) 在每个 shard 上执行切分。例如,如果 shard 的数量是 2 ,并且用户请求 4 slices ,那么 id 为 0 和 2 的 slice 会被分配给第一个 shard ,id 为 1 和 3 的 slice 会被分配给第二个 shard 。
每个 scroll 是独立的,可以像任何 scroll 请求一样进行并行处理。
NOTE:如果 slices 的数量比 shards 的数量大,第一次调用时,slice filter 的速度会非常慢。它的复杂度时 O(n) ,内存开销等于每个 slice N 位,其中 N 时 shard 中的文档总数。经过几次调用后,筛选器会被缓存,后续的调用会更快。但是仍需要限制并行执行的 sliced 查询的数量,以免内存激增。
为了完全避免此成本,可以使用另一个字段的 doc_values
来进行切片,但用户必须确保该字段具有以下属性:
- 该字段是数字类型
- 该字段启用了
doc_values
- 每个文档应当包含单个值。如果一份文档有指定字段的多个值,则使用第一个值
- 每个文档的值在创建文档时设置了之后不再更新,这可以确保每个切片获得确定的结果
- 字段的基数应当很高,这可以确保每个切片获得的文档数量大致相同
GET /twitter/tweet/_search?scroll=1m
{
"slice": {
"field": "date",
"id": 0,
"max": 10
},
"query": {
"match" : {
"title" : "elasticsearch"
}
}
}
NOTE:默认情况下,每个 scroll 允许的最大切片数量时 1024。你可以更新索引设置中的
index.max_slices_per_scroll
来绕过此限制。
Elasticsearch - Scroll的更多相关文章
- 如何通过Elasticsearch Scroll快速取出数据,构造pandas dataframe — Python多进程实现
首先,python 多线程不能充分利用多核CPU的计算资源(只能共用一个CPU),所以得用多进程.笔者从3.7亿数据的索引,取200多万的数据,从取数据到构造pandas dataframe总共大概用 ...
- elasticsearch scroll api--jestclient invoke
@Test public void testScroll(){ JestClientFactory factory = new JestClientFactory(); factory.setHttp ...
- Elasticsearch——分页查询From&Size VS scroll
Elasticsearch中数据都存储在分片中,当执行搜索时每个分片独立搜索后,数据再经过整合返回.那么,如果要实现分页查询该怎么办呢? 更多内容参考Elasticsearch资料汇总 按照一般的查询 ...
- Elasticsearch Sliced Scroll分页检索案例分享
面试:你懂什么是分布式系统吗?Redis分布式锁都不会?>>> The best elasticsearch highlevel java rest api-----bboss ...
- Elasticsearch:运用scroll接口对大量数据实现更好的分页
在Elasticsearch中,我们可以通过size和from来对我们的结果来进行分页.但是对于数据量很大的索引,这是有效的吗?Scroll API可用于从单个搜索请求中检索大量结果(甚至所有结果), ...
- 亿级 Elasticsearch 性能优化
前言 最近一年使用 Elasticsearch 完成亿级别日志搜索平台「ELK」,亿级别的分布式跟踪系统.在设计这些系统的过程中,底层都是采用 Elasticsearch 来做数据的存储,并且数据量都 ...
- ElasticSearch性能优化
一.搜索效率优化 批量提交 当有大量数据提交的时候,建议采用批量提交. 比如在做 ELK 过程中 ,Logstash indexer 提交数据到 Elasticsearch 中 ,batch size ...
- Elasticsearch利用scroll查询获取所有数据
Elasticsearch有两种分页方式,一种是通过from和size条件来实现,但是该方法开销比较大,另一种是利用scroll来实现,通过scroll来实现分页获取所有的数据,下面是利用python ...
- elasticsearch 布尔过滤器 游标查询 Scroll
组合过滤器 | Elasticsearch: 权威指南 | Elastic https://www.elastic.co/guide/cn/elasticsearch/guide/current/co ...
随机推荐
- 【BZOJ3590】[Snoi2013]Quare 状压DP
这道题...神题. 首先看到数据范围,一眼状压 dp .然后? 没了. 理性分析,这里说断掉任意一条边图依然连通,即整个图构成一个边双(而不是点双). 之前用 fire (机房里的随机算法总称)之所以 ...
- JUnit3 和 JUnit4的区别
JUnit3 和 JUnit4的区别 1.JUnit 4使用org.junit.*包而JUnit 3.8使用的是junit.Framework.*;为了向后兼容,JUnit4发行版中加入了这两种包. ...
- linux 常用的中文手册
http://linuxtools-rst.readthedocs.io/zh_CN/latest/base/index.html 总结的非常好!包括基础.进阶以及各种常用工具.
- linux 提高代码质量的工具
很多IT公司对于软件开发都有严格的分工,这包括设计.测试.服务支持等等.但是,我一直都认为只有开发者才是真正对软件质量负责的人.没有好的软件设计,软件质量基本上是无从谈起.当然,要做到这一点是需要额外 ...
- Mvc 批量图片上传
首先导入文件(官网上下载 kindeditor ): <link href="~/kindeditor-4.1.11-zh-CN/kindeditor/themes/default/d ...
- Spring通过SchedulerFactoryBean实现调度任务的配置(定时器)
<?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.sp ...
- 大数据mapreduce二分法ip定位之Python实现
ip定位数据大约12M,采用-chacheFile 分发 文件来源https://pan.baidu.com/s/1J0pwTafHgt4T0k3vV_gC-A 格式大致格式如下: 0.0.0.0 0 ...
- Centos7 设置静态IP地址
一: 修改网卡配置文件(操作前先备份一下该文件),/etc/sysconfig/network-scripts/ 具体操作如下: 1:进入修改目录 [root@localhost ~]# clear ...
- Java的家庭记账本程序(A)
日期:2019.2.1 博客期:028 星期五 其实我早就开始开发“家庭记账本”的软件了,只不过写博客写的有点晚,我是打算先做web的!因为Android Studio的教程,还是要对应版本,好多问题 ...
- yum安装软件内容
linux yum源改为阿里yum源 1.备份 mv /etc/yum.repos.d/CentOS-Base.repo /etc/yum.repos.d/CentOS-Base.repo.back ...