Magic Stones CodeForces - 1110E (思维+差分)
1 second
256 megabytes
standard input
standard output
Grigory has nn magic stones, conveniently numbered from 11 to nn. The charge of the ii-th stone is equal to cici.
Sometimes Grigory gets bored and selects some inner stone (that is, some stone with index ii, where 2≤i≤n−12≤i≤n−1), and after that synchronizes it with neighboring stones. After that, the chosen stone loses its own charge, but acquires the charges from neighboring stones. In other words, its charge cici changes to c′i=ci+1+ci−1−cici′=ci+1+ci−1−ci.
Andrew, Grigory's friend, also has nn stones with charges titi. Grigory is curious, whether there exists a sequence of zero or more synchronization operations, which transforms charges of Grigory's stones into charges of corresponding Andrew's stones, that is, changes cici into titi for all ii?
The first line contains one integer nn (2≤n≤1052≤n≤105) — the number of magic stones.
The second line contains integers c1,c2,…,cnc1,c2,…,cn (0≤ci≤2⋅1090≤ci≤2⋅109) — the charges of Grigory's stones.
The second line contains integers t1,t2,…,tnt1,t2,…,tn (0≤ti≤2⋅1090≤ti≤2⋅109) — the charges of Andrew's stones.
If there exists a (possibly empty) sequence of synchronization operations, which changes all charges to the required ones, print "Yes".
Otherwise, print "No".
4
7 2 4 12
7 15 10 12
Yes
3
4 4 4
1 2 3
No
In the first example, we can perform the following synchronizations (11-indexed):
- First, synchronize the third stone [7,2,4,12]→[7,2,10,12][7,2,4,12]→[7,2,10,12].
- Then synchronize the second stone: [7,2,10,12]→[7,15,10,12][7,2,10,12]→[7,15,10,12].
In the second example, any operation with the second stone will not change its charge
思路:
通过样例观察:
In the first example, we can perform the following synchronizations (11-indexed):
- First, synchronize the third stone [7,2,4,12]→[7,2,10,12][7,2,4,12]→[7,2,10,12].
- Then synchronize the second stone: [7,2,10,12]→[7,15,10,12][7,2,10,12]→[7,15,10,12
我们来看最初的数组,和中途的数组,以及目标数组,他们的差分都是【5,8,2】这三个数,变来变去都是这三个,
再加以观察可以发现,我们每执行一个操作,影响的只是交换了差分,那么只需要数组的首尾两个数相等,并且中间的差分数排序后相等即可保证一一定能交换成功。
细节见代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#define rt return
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define db(x) cout<<"== [ "<<x<<" ] =="<<endl;
using namespace std;
typedef long long ll;
ll gcd(ll a,ll b){return b?gcd(b,a%b):a;}
ll lcm(ll a,ll b){return a/gcd(a,b)*b;}
ll powmod(ll a,ll b,ll MOD){ll ans=;while(b){if(b%)ans=ans*a%MOD;a=a*a%MOD;b/=;}return ans;}
inline void getInt(int* p);
const int maxn=;
const int inf=0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
int n;
int a[maxn];
int b[maxn];
int main()
{
gbtb;
cin>>n;
repd(i,,n)
{
cin>>a[i];
}
repd(i,,n)
{
cin>>b[i];
} std::vector<int> v1;
std::vector<int> v2;
bool isok=;
if(a[]!=b[]||a[n]!=b[n])
{
// db(2);
isok=;
} repd(i,,n)
{
v1.pb(a[i]-a[i-]);
v2.pb(b[i]-b[i-]);
}
int z=sz(v1);
sort(v1.begin(),v1.end());
sort(v2.begin(),v2.end());
repd(i,,z-)
{
if(v1[i]!=v2[i])
{
isok=;
}
}
if(isok)
{
printf("Yes\n");
}else
{
printf("No\n");
}
return ;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '');
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * - ch + '';
}
}
else {
*p = ch - '';
while ((ch = getchar()) >= '' && ch <= '') {
*p = *p * + ch - '';
}
}
}
Magic Stones CodeForces - 1110E (思维+差分)的更多相关文章
- Codeforces 1110E (差分)
题面 传送门 分析 一开始考虑贪心和DP,发现不行 考虑差分: 设d[i]=c[i+1]-c[i] (i<n) 那么一次操作会如何影响差分数组呢? \(c[i]'=c[i+1]+c[i-1]-c ...
- E. Magic Stones CF 思维题
E. Magic Stones time limit per test 1 second memory limit per test 256 megabytes input standard inpu ...
- 【CF1110E】 Magic Stones - 差分
题面 Grigory has n n magic stones, conveniently numbered from \(1\) to \(n\). The charge of the \(i\)- ...
- CF 1110 E. Magic Stones
E. Magic Stones 链接 题意: 给定两个数组,每次可以对一个数组选一个位置i($2 \leq i \leq n - 1$),让a[i]=a[i-1]+a[i+1]-a[i],或者b[i] ...
- Magic Numbers CodeForces - 628D
Magic Numbers CodeForces - 628D dp函数中:pos表示当前处理到从前向后的第i位(从1开始编号),remain表示处理到当前位为止共产生了除以m的余数remain. 不 ...
- Dima and Magic Guitar CodeForces - 366E
Dima and Magic Guitar CodeForces - 366E 题意: http://blog.csdn.net/u011026968/article/details/38716425 ...
- LZH的多重影分身 qduoj 思维 差分
LZH的多重影分身 qduoj 思维 差分 原题链接:https://qduoj.com/problem/591 题意 在数轴上有\(n\)个点(可以重合)和\(m\)条线段(可以重叠),你可以同时平 ...
- Codeforces.1110E.Magic Stones(思路 差分)
题目链接 听dalao说很nb,做做看(然而不小心知道题解了). \(Description\) 给定长为\(n\)的序列\(A_i\)和\(B_i\).你可以进行任意多次操作,每次操作任选一个\(i ...
- 【Codeforces 1110E】Magic Stones
Codeforces 1110 E 题意:给定两个数组,从第一个数组开始,每次可以挑选一个数,把它变化成左右两数之和减去原来的数,问是否可以将第一个数组转化成第二个. 思路: 结论:两个数组可以互相转 ...
随机推荐
- C#委托(转载)
C#委托的介绍(delegate.Action.Func.predicate) from:http://www.cnblogs.com/akwwl/p/3232679.html 委托是一个类,它定义了 ...
- Postgresql的隐藏系统列
转自 https://www.2cto.com/database/201206/137301.html Postgresql的隐藏系统列 和oracle数据库一样,postgresql也有自身 ...
- Zabbix Agent安装与卸载
cmd /c "C:\zabbix\bin\win64\zabbix_agentd.exe -c c:\zabbix\conf\zabbix_agentd.win.conf -i" ...
- MATLAB常微分方程数值解——欧拉法、改进的欧拉法与四阶龙格库塔方法
MATLAB常微分方程数值解 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1.一阶常微分方程初值问题 2.欧拉法 3.改进的欧拉法 4.四阶龙格库塔 ...
- iOS弹出UIViewController小视图
在TestViewController1中弹出TestViewController2 在TestViewController中点击按钮或者什么触发方法里面写入以下代码 TestViewControll ...
- ABAP 7.50 新特性 – Open SQL中的宿主表达式和其它表达式
在长期的停滞后,Open SQL的发展终于从沉睡中醒来.从ABAP 7.40开始,SAP推进了某些关键的改变,以尽可能地包含SQL92中的特性,并提供与ABAP CDS中的DDL里面的SELECT一样 ...
- 【工具大道】使用SSH远程登录Mac 电脑
本文地址 一.打开ssh Mac Terminal是自带SSH的,可以用whereis来看看: $ whereis ssh 但是在现有进程中找不到ssh对应的进程: $ ps aux | grep s ...
- Sublime 汉化、快捷键打开浏览器
Sublime 是一个优秀的代码编译工具,它具有漂亮的用户界面和强大的功能,例如代码缩略图,Python 的插件,代码段等.不仅如此,它还可自定义按键绑定,菜单和工具栏.由于是歪果仁开发的,所以官方版 ...
- 12个 Linux 中 grep 命令的超级用法实例
12个 Linux 中 grep 命令的超级用法实例 你是否遇到过需要在文件中查找一个特定的字符串或者样式,但是不知道从哪儿开始?那么,就请grep来帮你吧. grep是每个Linux发行版都预装的一 ...
- w3m 在ubuntu中的使用
w3m 使用总结 安装 sudo apt install w3m终端 w3m www.baidu.com 即可打开w3m是个开放源代码的命令行下面的网页浏览器.一般的linux系统都会自带这个工具,可 ...