这个好像比较简单。

前缀规则好像还没有理清楚。

# coding = utf-8

class Stack:
    def __init__(self):
        self.items = []

    # 是否为空
    def is_empty(self):
        return self.items == []

    # 进栈
    def push(self, item):
        self.items.append(item)

    # 出栈
    def pop(self):
        return self.items.pop()

    # 返回栈顶值,不改变栈
    def peek(self):
        return self.items[len(self.items) - 1]

    # 返回栈长度
    def size(self):
        return len(self.items)

def infix_to_postfix(infix_expr):
    prec = dict()
    prec["*"] = 3
    prec["/"] = 3
    prec["+"] = 2
    prec["-"] = 2
    prec["("] = 1
    prec[")"] = 1
    postfix_expr = []
    s = Stack()
    for item in infix_expr.split():
        # 如果标记是操作数,将其附加到输出列表的末尾
        if item not in prec.keys():
            postfix_expr.append(item)
        # 如果标记是左括号,将其压到 s 上
        elif item == '(':
            s.push(item)
        # 如果标记是右括号,则弹出 s,直到删除相应的左括号。将每个运算符附加到
        # 输出列表的末尾
        elif item == ')':
            while s.peek() != '(':
                postfix_expr.append(s.pop())
            s.pop()
        # 如果标记是运算符, *,/,+  或  -  ,将其压入 s。但是,首先删除已经在
        # s 中具有更高或相等优先级的任何运算符,并将它们加到输出列表中
        else:
            while (not s.is_empty()) \
                    and (prec[s.peek()] >= prec[item]):
                postfix_expr.append(s.pop())
            s.push(item)
        print(s.items)
    # 当输入表达式被完全处理时,检查 s。仍然在栈上的任何运算符都可以删除并加到
    # 输出列表的末尾
    while not s.is_empty():
        postfix_expr.append(s.pop())

    return ' '.join(postfix_expr)

def postfix_eval(postfix_expr):
    s = Stack()
    for item in postfix_expr.split():
        # 如果不是运算符号,压栈
        if item not in '+-*/':
            s.push(item)
        else:
            # 如果是运算符号,取出栈上最近两个数字进行运算
            # 然后,再将结果压回栈
            op2 = int(s.pop())
            op1 = int(s.pop())
            print(op1, item, op2)
            result = do_match(item, op1, op2)
            s.push(result)
        print(s.items)
    return result

# 运行结果
def do_match(op, op1, op2):
    if op == '+':
        return op1 + op2
    elif op == '-':
        return op1 - op2
    elif op == '*':
        return op1 * op2
    elif op == '/':
        return op1 / op2
    else:
        raise Exception('Error operation!')

infix_str = '( 23 + 2 ) * 5 - 280 / ( 4 + 11 * 6 - 35 )'

postfix_output = infix_to_postfix(infix_str)
print(infix_str)
print(postfix_output)
postfix_result = postfix_eval(postfix_output)
print(postfix_result)

  

输出:显示了栈的情况

C:\Users\Sahara\.virtualenvs\untitled\Scripts\python.exe D:/test/python_stack.py
['(']
['(']
['(', '+']
['(', '+']
[]
['*']
['*']
['-']
['-']
['-', '/']
['-', '/', '(']
['-', '/', '(']
['-', '/', '(', '+']
['-', '/', '(', '+']
['-', '/', '(', '+', '*']
['-', '/', '(', '+', '*']
['-', '/', '(', '-']
['-', '/', '(', '-']
['-', '/']
( 23 + 2 ) * 5 - 280 / ( 4 + 11 * 6 - 35 )
23 2 + 5 * 280 4 11 6 * + 35 - / -
['23']
['23', '2']
23 + 2
[25]
[25, '5']
25 * 5
[125]
[125, '280']
[125, '280', '4']
[125, '280', '4', '11']
[125, '280', '4', '11', '6']
11 * 6
[125, '280', '4', 66]
4 + 66
[125, '280', 70]
[125, '280', 70, '35']
70 - 35
[125, '280', 35]
280 / 35
[125, 8.0]
125 - 8
[117]
117

  

python-中缀转换后缀并计算的更多相关文章

  1. 《java数据结构与算法》笔记-CH4-8栈结构实现后缀表达式计算结果

    /** * 中缀表达式转换成后缀表达式: 从输入(中缀表达式)中读取的字符,规则: 操作数: 写至输出 左括号: 推其入栈 右括号: 栈非空时重复以下步骤--> * 若项不为(,则写至输出: 若 ...

  2. ZH奶酪:Python 中缀表达式转换后缀表达式

    实现一个可以处理加减乘数运算的中缀表达式转换后缀表达式的程序: 一个输入中缀表达式inOrder 一个输出池pool 一个缓存栈stack 从前至后逐字读取inOrder 首先看一下不包含括号的: ( ...

  3. 栈应用之 后缀表达式计算 (python 版)

    栈应用之 后缀表达式计算 (python 版) 后缀表达式特别适合计算机处理 1.  中缀表达式.前缀表达式.后缀表达式区别  中缀表达式:(3 - 5) * (6 + 17 * 4) / 3 17 ...

  4. PTA-7-20 表达式转换(中缀转后缀,带括号,负数,小数转换)

    本题考点:中缀表达式转后缀表达式. 难点: 带有小数的数字 数字可能带有正负号 题目描述: 算术表达式有前缀表示法.中缀表示法和后缀表示法等形式.日常使用的算术表达式是采用中缀表示法,即二元运算符位于 ...

  5. 栈的应用1——超级计算器(中缀与后缀表达式)C语言

    这里要学的程序主要用来实现一个功能——输入表达式输出结果,也就是一个计算器.效果如下: 这个程序主要有两个步骤:1.把中缀表达式转换为后缀表达式:2.计算后缀表达式的结果. 首先先明白几个问题: 1. ...

  6. Java数据结构和算法(六)——前缀、中缀、后缀表达式

    前面我们介绍了三种数据结构,第一种数组主要用作数据存储,但是后面的两种栈和队列我们说主要作为程序功能实现的辅助工具,其中在介绍栈时我们知道栈可以用来做单词逆序,匹配关键字符等等,那它还有别的什么功能吗 ...

  7. C++ 中缀转后缀表达式并求值

    //中缀转后缀 #include<iostream> #include<stack> using namespace std; int prio(char x){ ; ; ; ...

  8. Java数据结构和算法(六):前缀、中缀、后缀表达式

    前面我们介绍了三种数据结构,第一种数组主要用作数据存储,但是后面的两种栈和队列我们说主要作为程序功能实现的辅助工具,其中在介绍栈时我们知道栈可以用来做单词逆序,匹配关键字符等等,那它还有别的什么功能吗 ...

  9. 【C++】朝花夕拾——中缀转后缀

    对于简单的四则运算而言,后缀表达式可以通过使用栈(stack)快速算出结果 ==================================我是分割线======================= ...

随机推荐

  1. 【ARTS】01_16_左耳听风-20190225~20190303

    ARTS: Algrothm: leetcode算法题目 Review: 阅读并且点评一篇英文技术文章 Tip/Techni: 学习一个技术技巧 Share: 分享一篇有观点和思考的技术文章 Algo ...

  2. 看完此文还不懂NB-IoT,你就过来掐死我吧...

    看完此文还不懂NB-IoT,你就过来掐死我吧....... 1 1G-2G-3G-4G-5G 不解释,看图,看看NB-IoT在哪里? 2 NB-IoT标准化历程 3GPP NB-IoT的标准化始于20 ...

  3. 从运维角度来分析mysql数据库优化的一些关键点【转】

    概述 一个成熟的数据库架构并不是一开始设计就具备高可用.高伸缩等特性的,它是随着用户量的增加,基础架构才逐渐完善. 1.数据库表设计 项目立项后,开发部根据产品部需求开发项目,开发工程师工作其中一部分 ...

  4. python标准库之argparse

    argparse的使用 argparse 是 Python 内置的一个用于命令项选项与参数解析的模块,通过在程序中定义好我们需要的参数,argparse 将会从 sys.argv 中解析出这些参数,并 ...

  5. VC++、MFC最好的开源项目

    介绍:介绍一下用VC++/MFC写的最好的开源项目. Sourceforge.net中有许多高质量的VC++开源项目,我列举了一些可以作为VC++程序员的参考. 正文: VC++.MFC中最好的开源项 ...

  6. 【转】Java HashMap的死循环

    问题的症状 从前我们的Java代码因为一些原因使用了HashMap这个东西,但是当时的程序是单线程的,一切都没有问题.后来,我们的程序性能有问题,所以需要变成多线程的,于是,变成多线程后到了线上,发现 ...

  7. xclip for windows

    下载源码和可执行文件 xclip.7z // The MIT License (MIT) // Copyright (c) 2014 Rapptz // Permission is hereby gr ...

  8. Date——时间戳转化为YYYY-MM-DD h:m:s时间格式

    /** * example new Date(times) * @param time Date * @param fmt "yyyy-MM-dd" /"yyyy-MM- ...

  9. PHP导出MySQL数据字典 Summer-Mysql-Dic

    2017年11月9日09:30:29 用 PHP 写的一个类文件, 用来导出MySQL数据字典 导出表信息; 字段信息, 索引信息 可以导出浏览器适用的样式, 也可以导出word文档 建议上线前用这个 ...

  10. Cassandra索引详解

    转自: https://www.cnblogs.com/bonelee/p/6278943.html 1.什么是二级索引? 我们前面已经介绍过Cassandra之中有各种Key,比如Primary K ...