BZOJ 2440 【中山市选2011】 完全平方数
Description
小 X 自幼就很喜欢数。但奇怪的是,他十分讨厌完全平方数。他觉得这些数看起来很令人难受。由此,他也讨厌所有是完全平方数的正整数倍的数。然而这丝毫不影响他对其他数的热爱。
这天是小X的生日,小 W 想送一个数给他作为生日礼物。当然他不能送一个小X讨厌的数。他列出了所有小X不讨厌的数,然后选取了第 K个数送给了小X。小X很开心地收下了。
然而现在小 W 却记不起送给小X的是哪个数了。你能帮他一下吗?
Input
包含多组测试数据。文件第一行有一个整数 T,表示测试数据的组数。
第2 至第T+1 行每行有一个整数Ki,描述一组数据,含义如题目中所描述。
Output
含T 行,分别对每组数据作出回答。第 i 行输出相应的第Ki 个不是完全平方数的正整数倍的数。
HINT
对于 100%的数据有 1 ≤ Ki ≤ 10^9,T ≤ 50
原谅我太弱……什么题都做不出……
这道题感觉题面好像有点问题啊……$1$不是完全平方数吗……TAT
这道题是莫比乌斯函数的一个经典应用:容斥。对于$1$到$n$,我们要求有多少个数不是完全平方数的倍数,显然我们要把所有数的平方都给减掉。那么就就容斥一发,每次减去是 含有奇数个质因子的数 的平方的倍数个数,再把有偶数个质因子的给加回来。根据莫比乌斯函数的定义,当一个数$n$的质因子两两不同且有$p$个时,$\mu (n)=(-1)^p$,如果某个质因子出现了不止一次则$\mu (n)=0$。于是用莫比乌斯函数就可以非常方便地进行容斥了。
最后二分答案之后判定即可。
下面贴代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
#define File(s) freopen(s".in","r",stdin),freopen(s".out","w",stdout)
#define maxn 100010 using namespace std;
typedef long long llg; int a[maxn],la,mu[maxn],k,T;
bool w[maxn]; void getu(){//筛莫比乌斯函数
mu[1]=1;
for(int i=2;i<maxn;i++){
if(!w[i]) a[++la]=i,mu[i]=-1;
for(int j=1;j<=la && a[j]*i<maxn;j++){
w[a[j]*i]=1;
if(i%a[j]) mu[i*a[j]]=-mu[i];
else{ mu[a[j]*i]=0; break;}
}
}
} int suan(int x){
int ans=0;
for(int i=1;i*i<=x;i++)
ans+=mu[i]*(x/(i*i));
return ans;
} int main(){
File("a");
scanf("%d",&T);
getu();
while(T--){
scanf("%d",&k);
int l=1,r=2147483647,mid;
while(l!=r){
mid=(int)(((llg)l+(llg)r)>>1);
if(suan(mid)>=k) r=mid;
else l=mid+1;
}
printf("%d\n",l);
}
return 0;
}
这道题还是一道双倍经验题,同 vijos1889(稍微有点变化)。
BZOJ 2440 【中山市选2011】 完全平方数的更多相关文章
- BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数
BZOJ 2440 [中山市选2011]完全平方数 | 莫比乌斯函数 题面 找出第k个不是平方数的倍数的数(1不是平方数, \(k \le 10^9\)). 题解 首先二分答案,问题就转化成了求\([ ...
- BZOJ 2440 [中山市选2011]完全平方数 (二分 + 莫比乌斯函数)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4805 Solved: 2325[Submit][Sta ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
- BZOJ 2440: [中山市选2011]完全平方数( 二分答案 + 容斥原理 + 莫比乌斯函数 )
先二分答案m,<=m的有m-∑(m/pi*pi)+∑(m/pi*pi*pj*pj)-……个符合题意的(容斥原理), 容斥系数就是莫比乌斯函数μ(预处理)... ----------------- ...
- Bzoj 2440: [中山市选2011]完全平方数(莫比乌斯函数+容斥原理+二分答案)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MB Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平 ...
- [BZOJ 2440] [中山市选2011] 完全平方数 【二分 + 莫比乌斯函数】
题目链接:BZOJ - 2440 题目分析 首先,通过打表之类的方法可以知道,答案不会超过 2 * k . 那么我们使用二分,对于一个二分的值 x ,求出 [1, x] 之间的可以送出的数有多少个. ...
- BZOJ 2440 [中山市选2011]完全平方数 二分+容斥
直接筛$\mu$?+爆算?再不行筛素数再筛个数?但不就是$\mu^2$的前缀和吗? 放...怕不是数论白学了$qwq$ 思路:二分+容斥 提交:两次(康了题解) 题解: 首先答案满足二分性质(递增), ...
- bzoj 2440: [中山市选2011]完全平方数
#include<cstdio> #include<iostream> #include<cstring> #include<cmath> #defin ...
- BZOJ.2440.[中山市选2011]完全平方数(莫比乌斯函数 二分)
题目链接 总感觉博客园的\(Markdown\)很..\(gouzhi\),可以看这的. 题意即求第\(k\)个无平方因子数. 无平方因子数(Square-Free Number),即分解之后所有质因 ...
- BZOJ 2440 [中山市选2011]完全平方数 ——莫比乌斯函数
$\sum_{i=1}^n[i==d^2*p]$ 其中p无平方因子$=\sum_{d^2\mid n,d>=2}\sum_{i=1}^{\lfloor {n/d^2} \rfloor} \lef ...
随机推荐
- 1.8 基础知识——GP2.7 识别和卷入干系人(Stakeholder) & GP2.9 质量保证(QA)
GP2.7 识别和卷入干系人(Stakeholder) GP2.7 Identify and involve the relevant stakeholders of XXX process as p ...
- Java集合的10个最常见问题
以下是一些在Stackoverflow上经常被问起的与Java集合相关的问题.在你查阅这些问题之前,最好先去看看[Simple Java]Java集合框架的接口和类层次关系结构图. 什么时候优先选择L ...
- 在Eclipse上使用Maven
Maven安装 去官网下载Maven,如下链接: http://maven.apache.org/download.cgi# 选择下载Binary zip archive 解压到本地,安装Maven前 ...
- ORA-00988: missing or invalid password(s)
创建账号或修改账号密码时有可能会遇到ORA-00988: missing or invalid password(s),那么什么情况下会遇到这种错误呢? 一般是因为密码的设置不符合命名规范: 1:密码 ...
- JavaScript(三)——DOM操作一
一.DOM的基本概念 DOM是文档对象模型,这种模型为树模型:文档是指标签文档:对象是指文档中每个元素:模型是指抽象化的东西. 二.Window对象操作 1.属性和方法: 属性(值或者子对象): op ...
- 全站HTTPs,没那么简单
“全站 HTTPs”俨然成了目前的热门话题,很多网站都在摩拳擦掌要实行全站 HTTPs.凑巧,我们(沪江)也在推行这个计划. 一开始大家想得都很简单,把证书购买了.配好了,相应的路径改一改,就没有问题 ...
- Zookeeper 服务注册和发现
Zookeeper 分布式服务框架是 Apache Hadoop 的一个子项目,它主要是用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务.状态同步服务.集群管理.分布式应用配置项的管理 ...
- VPS拨号主机自动拨号脚本(centos7)
问题:因公司会不定时购买大量VPS拨号主机,在部署环境的时候,首先要配置拨号,传统的拨号设置(pppoe-setup)配置比较繁琐,故写这个脚本方便拨号配置. #!/bin/bash ppp_user ...
- jenkins邮件通知功能
第部分:全局设置 第一步:进入jenkins的系统设置 第二步:设置管理员邮件地址: 第三步:下载email-ext插件并填写对应的内容: 第四部:填写邮件通知 第五步:以上就是系统管理里需要填写的全 ...
- android 查看解压后的.xml文件代码(axmlprinter2)
axmlprinter2工具下载地址:http://pan.baidu.com/s/1o67eXtS 方法:1.将要查看的.xml文件复制到AXMLPrinter2.jar所在目录2.通过cmd 输入 ...