Given inorder and level-order traversals of a Binary Tree, construct the Binary Tree. Following is an example to illustrate the problem.

BinaryTree

Input: Two arrays that represent Inorder and level order traversals of a Binary Tree
in[]    = {4, 8, 10, 12, 14, 20, 22};
level[] = {20, 8, 22, 4, 12, 10, 14};

Output: Construct the tree represented by the two arrays. For the above two arrays, the constructed tree is shown in the diagram.

geeksforgeeks的做法是,每次以in和level数组去构建以level[0]为根结点的树。生成下一次level结点的开销是O(n),所以整个时间复杂度是O(n^2)。

我的做法是:

1. 先计算出所有点的层序号。基于这个规律,如果两个元素在同一层,那么后面的数在中序遍历的顺序中,必然也是处于后面;如果后面的数在中序遍历中处于前面,那么必然是处于下一层。O(n)可以做到,但是需要先对两个数组作索引。

2. 从最后一层开始,每一层的左结点,是在inorder序列中,在它左边的连续序列(该序列必须保证层数比它大)中第一个层数=它的层数+1的数。右结点同理。查找左右结点的开销需要O(n)。

所以最终可以做到$O(n^2)$。

 struct TreeNode {
int val;
TreeNode *left, *right;
TreeNode(int v): val(v), left(NULL), right(NULL) {}
}; void print(TreeNode *root) {
if (root == NULL) {
cout << "NULL ";
} else {
cout << root->val << " ";
print(root->left);
print(root->right);
}
} struct Indices {
int inOrderIndex;
int levelOrderIndex;
int level;
}; int main(int argc, char** argv) {
vector<int> inOrder = {, , , , , , };
vector<int> levelOrder = {, , , , , , }; // build indices
unordered_map<int, Indices> indices;
for (int i = ; i < inOrder.size(); ++i) {
if (indices.count(inOrder[i]) <= ) {
indices[inOrder[i]] = {i, , };
} else {
indices[inOrder[i]].inOrderIndex = i;
}
if (indices.count(levelOrder[i]) <= ) {
indices[levelOrder[i]] = {, i, };
} else {
indices[levelOrder[i]].levelOrderIndex = i;
}
} // get level no. for each number
int level = ;
for (int i = ; i < levelOrder.size(); ++i) {
if (indices[levelOrder[i]].inOrderIndex < indices[levelOrder[i - ]].inOrderIndex) {
++level;
}
indices[levelOrder[i]].level = level;
} unordered_map<int, TreeNode*> nodes;
for (int i = levelOrder.size() - ; i >= ; --i) {
nodes[levelOrder[i]] = new TreeNode(levelOrder[i]);
int index = indices[levelOrder[i]].inOrderIndex;
for (int j = index - ; j >= && indices[inOrder[j]].level > indices[inOrder[index]].level; --j) {
if (indices[inOrder[j]].level == indices[inOrder[index]].level + ) {
nodes[levelOrder[i]]->left = nodes[inOrder[j]];
break;
}
}
for (int j = index + ; j < levelOrder.size() && indices[inOrder[j]].level > indices[inOrder[index]].level; ++j) {
if (indices[inOrder[j]].level == indices[inOrder[index]].level + ) {
nodes[levelOrder[i]]->right = nodes[inOrder[j]];
break;
}
}
}
print(nodes[levelOrder[]]);
cout << endl;
return ;
}

Construct a tree from Inorder and Level order traversals的更多相关文章

  1. Leetcode, construct binary tree from inorder and post order traversal

    Sept. 13, 2015 Spent more than a few hours to work on the leetcode problem, and my favorite blogs ab ...

  2. LeetCode: Construct Binary Tree from Inorder and Postorder Traversal 解题报告

    Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder traversal of ...

  3. Construct Binary Tree from Inorder and Postorder Traversal

    Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder traversal of ...

  4. 36. Construct Binary Tree from Inorder and Postorder Traversal && Construct Binary Tree from Preorder and Inorder Traversal

    Construct Binary Tree from Inorder and Postorder Traversal OJ: https://oj.leetcode.com/problems/cons ...

  5. LeetCode:Construct Binary Tree from Inorder and Postorder Traversal,Construct Binary Tree from Preorder and Inorder Traversal

    LeetCode:Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder trav ...

  6. 【题解二连发】Construct Binary Tree from Inorder and Postorder Traversal & Construct Binary Tree from Preorder and Inorder Traversal

    LeetCode 原题链接 Construct Binary Tree from Inorder and Postorder Traversal - LeetCode Construct Binary ...

  7. 【LeetCode】106. Construct Binary Tree from Inorder and Postorder Traversal

    Construct Binary Tree from Inorder and Postorder Traversal Given inorder and postorder traversal of ...

  8. [Leetcode Week14]Construct Binary Tree from Inorder and Postorder Traversal

    Construct Binary Tree from Inorder and Postorder Traversal 题解 原创文章,拒绝转载 题目来源:https://leetcode.com/pr ...

  9. Leetcode | Construct Binary Tree from Inorder and (Preorder or Postorder) Traversal

    Construct Binary Tree from Preorder and Inorder Traversal Given preorder and inorder traversal of a ...

随机推荐

  1. POJ 1743 后缀数组

    题目链接:http://poj.org/problem?id=1743 题意:给定一个钢琴的音普序列[值的范围是(1~88)],现在要求找到一个子序列满足 1,长度至少为5 2,序列可以转调,即存在两 ...

  2. SQL初级第三课(上)

    先建立一个表 create table Student                 --学生(Sno          char(3) primary key ,  --学生学号Sname     ...

  3. 【转】】Android ADB命令大全

    ADB很强大,记住一些ADB命令有助于提高工作效率. 获取序列号: adb get-serialno 查看连接计算机的设备: adb devices 重启机器: adb reboot 重启到bootl ...

  4. JS运动基础

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...

  5. HDU4758 Walk Through Squares(AC自动机+状压DP)

    题目大概说有个n×m的格子,有两种走法,每种走法都是一个包含D或R的序列,D表示向下走R表示向右走.问从左上角走到右下角的走法有多少种走法包含那两种走法. D要走n次,R要走m次,容易想到用AC自动机 ...

  6. python程序设计语言笔记 第一部分 程序设计基础

    1.1.1中央处理器(CPU) cpu是计算机的大脑,它从内存中获取指令然后执行这些指令,CPU通常由控制单元和逻辑单元组成. 控制单元用来控制和协调除cpu之外的其他组件的动作. 算数单元用来完成数 ...

  7. (转)MySQL提示“too many connections”的解决办法

    link:http://www.cfp8.com/mysql-prompt-too-many-connections-solution.html 今天生产服务器上的MySQL出现了一个不算太陌生的错误 ...

  8. Android --SeekBar的使用

    1. 效果图

  9. 【Eclipse】修改 编码格式

    eclipse 默认编码居然是GBK,js文件默认编码是ISO-....怎么可以这样呢? 都修改成UTF8的方法: 1.windows->Preferences...打开"首选项&qu ...

  10. tableFooterView中的按钮点击没反应

    一,经历 1.查了按钮没有响应的几个方法,排除了是用户交互设置为 NO 的情况. 2.然后打印了一下tableFooterView,尽然发现其高度为0,而且我也没有设置 frame, 却可以显示按钮, ...