C#多线程操作界面控件的解决方案(转)
C#中利用委托实现多线程跨线程操作
- 张小鱼 2010-10-22 08:38
其实解决这个问题有两种方法:
一,是通过设置
System.Windows.Forms.Control.CheckForIllegalCrossThreadCalls = false;
在你的程序初始化的时候设置了这个属性,而且在你的控件中使用的都是微软Framework类库中的控件的话,系统就不会再抛出你上面所说的这个错误了。
二,就是委托了,个人建议用这种方法
首先在WinForm窗体中拖入ListBox控件,然后参照以下代码:
EventArgs e) { t1 = new Thread(new ThreadStart(BackgroundProcess));
t1.Start(); //开始 } delegate void aa(); private void BackgroundProcess() {
// 将委托实例化 aa a= delegate() { for (int i = 0; i < 50; i++) {
listBox1.Items.Add("Iterations: " + i.ToString()); Thread.Sleep(300);
listBox1.Refresh(); } }; listBox1.Invoke(a); }
来源:http://www.huomo.cn/developer/article-1aa8.html
C#多线程操作界面控件的解决方案
我们在做winform应用的时候,大部分情况下都会碰到使用多线程控制界面上控件信息的问题。然而我们并不能用传统方法来做这个问题,下面我将详细的介绍。
首先来看传统方法:
InitializeComponent(); } private void Form1_Load(object sender,
EventArgs e) { Thread thread = new Thread(ThreadFuntion);
thread.IsBackground = true; thread.Start(); } private void
ThreadFuntion() { while (true) { this.textBox1.Text =
DateTime.Now.ToString(); Thread.Sleep(1000); } } }
运行这段 代码,我们会看到系统抛出一个异常:Cross-thread operation not valid:Control
'textBox1' accessed from a thread other than the thread it was created
on . 这是因为.net
2.0以后加强了安全机制,不允许在winform中直接跨线程访问控件的属性。那么怎么解决这个问题呢,下面提供几种方案。
第一种方案,我们在Form1_Load()方法中加一句代码:
Control.CheckForIllegalCrossThreadCalls = false; Thread thread = new
Thread(ThreadFuntion); thread.IsBackground = true; thread.Start(); }
加入这句代码以后发现程序可以正常运行了。这句代码就是说在这个类中我们不检查跨线程的调用是否
合法(如果没有加这句话运行也没有异常,那么说明系统以及默认的采用了不检查的方式)。然而,这种方法不可取。我们查看
CheckForIllegalCrossThreadCalls
这个属性的定义,就会发现它是一个static的,也就是说无论我们在项目的什么地方修改了这个值,他就会在全局起作用。而且像这种跨线程访问是否存在异
常,我们通常都会去检查。如果项目中其他人修改了这个属性,那么我们的方案就失败了,我们要采取另外的方案。
下面来看第二种方案,就是使用delegate和invoke来从其他线程中控制控件信息。网上有很多人写了这种控制方式,然而我看了很多这种帖子,表明上看来是没有什么问题的,但是实际上并没有解决这个问题,首先来看网络上的那种不完善的方式:
FlushClient();//代理 public Form1() { InitializeComponent(); }
private void Form1_Load(object sender, EventArgs e) { Thread thread =
new Thread(CrossThreadFlush); thread.IsBackground=true;
thread.Start(); } private void CrossThreadFlush() { //将代理绑定到方法
FlushClient fc = new FlushClient(ThreadFuntion);
this.BeginInvoke(fc);//调用代理 } private void ThreadFuntion() { while
(true) { this.textBox1.Text = DateTime.Now.ToString();
Thread.Sleep(1000); } } }
使用这种方式我们可以看到跨线程访问的异常没有了。但是新问题出现了,界面没有响应了。为什么会出现这个问题,我们只是让新开的线程无限
循环刷新,理论上
应该不会对主线程产生影响的。其实不然,这种方式其实相当于把这个新开的线程“注入”到了主控制线程中,它取得了主线程的控制。只要这个线程不返回,那么
主线程将永远都无法响应。就算新开的线程中不使用无限循环,使可以返回了。这种方式的使用多线程也失去了它本来的意义。
现在来让我们看看推荐的解决方案:
FlushClient();//代理 public Form1() { InitializeComponent(); }
private void Form1_Load(object sender, EventArgs e) { Thread thread =
new Thread(CrossThreadFlush); thread.IsBackground = true;
thread.Start(); } private void CrossThreadFlush() { while (true) {
//将sleep和无限循环放在等待异步的外面 Thread.Sleep(1000); ThreadFunction(); } }
private void ThreadFunction() { if
(this.textBox1.InvokeRequired)//等待异步 { FlushClient fc = new
FlushClient(ThreadFunction); this.Invoke(fc);//通过代理调用刷新方法 } else {
this.textBox1.Text = DateTime.Now.ToString(); } } }
运行上述代码,我们可以看到问题已经被解决了,通过等待异步,我们就不会总是持有主线程的控制,这样就可以在不发生跨线程调用异常的情况下完成多线程对winform多线程控件的控制了。
对于深山老林提出的问题,我最近找到了更优的解决方案,利用了delegate的异步调用,大家可以看看:
FlushClient();//代理 public Form1() { InitializeComponent(); }
private void Form1_Load(object sender, EventArgs e) { Thread thread =
new Thread(CrossThreadFlush); thread.IsBackground = true;
thread.Start(); } private void CrossThreadFlush() { FlushClient=new
FlushClient(ThreadFunction); FlushClient.BeginInvoke(null,null); }
private void ThreadFunction() { while (true) { this.textBox1.Text =
DateTime.Now.ToString(); Thread.Sleep(1000); } } }
这种方法也可以直接简化为(因为delegate的异步就是开了一个异步线程):
FlushClient();//代理 public Form1() { InitializeComponent(); }
private void Form1_Load(object sender, EventArgs e) { Thread thread =
new Thread(CrossThreadFlush); FlushClient=new
FlushClient(ThreadFunction); FlushClient.BeginInvoke(null,null); }
private void ThreadFunction() { while (true) { this.textBox1.Text =
DateTime.Now.ToString(); Thread.Sleep(1000); } } }
public partial class Form1 : Form
{
private delegate void ThreadWork(int i);
Thread thread; public Form1()
{
InitializeComponent(); // CheckForIllegalCrossThreadCalls = false;
} private void button1_Click(object sender, EventArgs e)
{
this.richTextBox1.Text = "程序开始:\r\n";
UpdateText();
} public void UpdateText()
{
thread = new Thread(new ThreadStart(CrossThreadFlush));
thread.IsBackground = true;
thread.Start();
} private void CrossThreadFlush()
{
while (true)
{ //将sleep和无限循环放在等待异步的外面 for (int i = 1; i < 100; i++)
{
ThreadFunction(i);
Thread.Sleep(500);
}
}
} private void ThreadFunction(int i)
{
if (this.richTextBox1.InvokeRequired)//等待异步
{
ThreadWork fc = new ThreadWork(ThreadFunction);
// this.Invoke(fc);//通过代理调用刷新方法
this.Invoke(fc, new object[1] { i }); }
else
{
this.richTextBox1.Text = string.Format("第{0}个\t{1:mm-ss}\r\n", i, DateTime.Now) + this.richTextBox1.Text;
this.richTextBox1.Refresh(); }
} }
}
- 张小鱼 2010-10-22 08:40
举 个例子:如果在一个公司里面有一个变量记录某人T的工资count=100,有两个主管A和B(即工作线程)在早一些时候拿了这个变量的值回去 ,过了一段时间A主管将T的工资加了5块,并存回count变量,而B主管将T的工资减去3块,并存回count变量。好了,本来T君可以得到102块的 工资的,现在就变成98块了。这就是线程同步要解决的问题。
在C#里面用于实现线程同步的常用类有如下几类 1、Mutex类(互斥器),Monitor类,lock方法
2、ManualResetEvent类,AutoResetEvent类(这两个都是由EventWaitHandle类派生出来的)
3、ReaderWriterLock类
同 一类的作用都差不多:其中 代码执行为止。就好比一堆人同时上一个公共厕所一样,使用这个方法就可以解决文章一开始时提出的问题:主管A要处理T君的工资之前,先lock一下T君, 然后取出目前的count值,处理完之后再解除T君的锁定。如果主管B在主管A处理工资时也想取出count值,那么它只能是一直地等待A处理完之后才能 继续。使用这个方法的一个缺点就是会降低程序的效率。本来是一个多个线程的操作,一旦遇到lock的语句时,那么这些线程只要排队处理,形同一个单线程操 作。
下面举个例子说明一下这三个方法的使用:
假定有一个Tools类,里面一个int变量,还有Add和Delete方法,其中Add方法会使int变量的值增加,Delete方法使int变量值减少:
public class Tools private int count = 100;
public void Add(int n) count+=n;
}
public void Delete(int n) count-=n;
}
在多个线程同时访问这段代码时,因为一个语句会被编译器编译成多个指令,所以会可能出现这种情况:但某个线程调用Add方法时,这时的count值为 100,而正当要加上n的时候,另外一个线程调用了Delete,它要减去m,结果count加上了n,然后又在原先count=100的值的情况
下减掉了m,最后的结果是count被减去了m,而没有加上n。很明显Add方法和Delete方法是不能同时被调用的,所以必须进行线程同步处理。简单的方法是用lock语句:
public class Tools private object abcde = new object();
private int count = 100;
public void Add(int n) lock(abcde) count+=n;
}
public void Delete(int n) lock(abcde) count-=n; }
其中abcde是一个private级的内部变量,它不表示任何的意义,只是作为一种“令牌”的角色。
当执行Add方法中的lock(abcde)方法时,这个令牌就在Add方法的手中了,如果这时有第二个线程也想拿这个令牌,没门,惟有等待。一旦第一
个lock语句的花括号范围结束之后,这时令牌就被释放了,同时会迅速落到第二个线程的手中,并且排除其他后来的人。
使用Monitor类的方法大致一样:
public class Tools private object abcde = new object();
private int count = 100;
public void Add(int n) Monitor.Enter(abcde);
count+=n;
Monitor.Exit(abcde);
}
public void Delete(int n) Monitor.Enter(abcde);
count-=n;
Monitor.Exit(abcde);
}
Monitor的常用方法:Enter和Exit都是静态方法,作用跟lock语句的两个花括号一样。
而使用 Mutex 就不需声明一个“令牌”对象了,但要实例化之后才可以使用:
public class Tools
{
private Mutex mut = new Mutex();
private int count = 100;
public void Add(int n) mut.WaitOne();
count+=n;
mut.ReleaseMutex();
}
public void Delete(int n) mut.WaitOne();
count-=n;
mut.ReleaseMutex();
}
其中的WaitOne为等待方法,一直等到Mutex 被释放为止。初始的情况下,Mutex 对象是处于释放状态的,而一旦执行了WaitOne方法之后,它 就被捕获了,一直到被调用了ReleaseMutex方法之后才被释放。
使用这三种方法都有一个要注意的问题,就是在独占代码段里面如果引起了异常,可能会使“令牌”对象不被释放,这样程序就会一直地死等下去了。
所以要在独占代码段里面处理好异常。例如下面这样的代码就是错误的:
public void Add(int n) try mut.WaitOne();
count+=n; mut.ReleaseMutex(); catch Console.Writeline("error."); }
上面的代码一旦在try和catch里面发生了异常,那么Mutex就不能被释放,后面的程序就会卡死在WaitOne()一行,而应该改成这样:
public void Add(int n) mut.WaitOne();
try count+=n; }
catch Console.Writeline("error."); mut.ReleaseMutex();
}
现在谈一下第二种:
ManualResetEvent类,AutoResetEvent类
上面这两个类都是由EventWaitHandle类派生出来的,所以功能和调用方法都很相似。 举个例子,你想送花给一个MM,托了一个送花的小伙子送了过去,而你希望当MM收到花之后就立即打个电话过去告诉她。
但问题是你不知道花什么时候才送到MM的手里,打早了打迟了都不好,这时你可以使用ManualResetEvent对象帮忙。
当委托小伙子送花过去的时候,使用ManualResetEvent的WaitOne方法进行等待。当小伙子把花送到MM的手中时,再调用一下ManualResetEvent的Set方法,你就可以准时地打电话过去了。
另外ManualResetEvent还有一个Reset方法,用来重新阻断调用者执行的,情况就好比你委托了这个小伙子送花给N个MM,
而又想准时地给这N个MM打电话的情况一样。
using System;
using System.Threading;
public class TestMain private static ManualResetEvent ent = new ManualResetEvent(false);
public static void Main() Boy sender = new Boy(ent);
Thread th = new Thread(new ThreadStart(sender.SendFlower));
th.Start();
ent.WaitOne(); //等待工作
Console.WriteLine("收到了吧,花是我送嘀:)");
Console.ReadLine();
public class Boy ManualResetEvent ent;
public Boy(ManualResetEvent e) ent = e;
}
public void SendFlower() Console.WriteLine("正在送花的途中");
Thread.Sleep(2000);
Console.WriteLine("\r\n花已经送到MM手中了,boss");
ent.Set(); //通知阻塞程序
}
而AutoResetEvent类故名思意,就是在每次Set完之后自动Reset。让执行程序重新进入阻塞状态。
即AutoResetEvent.Set() 相当于 ManualResetEvent.Set() 之后又立即 ManualResetEvent.Reset(), 举个送花给N个MM的例子:
using System;
using System.Threading;
public class TestMain private static AutoResetEvent ent = new AutoResetEvent(false);
public static void Main() Boy sender = new Boy(ent);
for (int i = 0; i < 3; i++) Thread th = new Thread(new ThreadStart(sender.SendFlower));
th.Start();
ent.WaitOne(); //等待工作
Console.WriteLine("收到了吧,花是我送嘀:)\r\n\r\n");
}
Console.ReadLine();
}
public class Boy AutoResetEvent ent;
public Boy(AutoResetEvent e) ent = e;
}
public void SendFlower() Console.WriteLine("正在送花的途中");
Thread.Sleep(2000);
Console.WriteLine("\r\n花已送到MM手中了,boss");
//通知阻塞程序,这里的效果相当于 ManualResetEvent的Set()方法+Reset()方法
ent.Set();
}
要注意的是ManualResetEvent和AutoResetEvent 的构造函数都有一个bool的参数,用这个参数可以指定初始情况下,同步对象的处于阻塞(设置为false)还是非阻塞(设置为true)的状态。
另外WaitOne方法也可以带两个参数:
WaitOne (int millisecondsTimeout,bool exitContext)
millisecondsTimeout:等待的毫秒数,或为 Timeout.Infinite (-1),表示无限期等待。
exitContext:为 true,则等待之前先退出上下文的同步域(如果在同步上下文中),然后在稍后重新获取它;否则为false。
就是说,等待是可以加上一个期限的,如果等待的同步对象一直都不Set()的话,那么程序就会卡死,所以在WaitOne方法里面可以放置一个时间期限,单位是毫秒。
- 张小鱼 2010-10-22 08:41
近日,被Control的Invoke和BeginInvoke搞的头大,就查了些相关的资料,整理如下。
(一)Control的Invoke和BeginInvoke (1)Control的Invoke和BeginInvoke与Delegate的Invoke和BeginInvoke是不同的。
(2)Control的Invoke和BeginInvoke的参数为delegate,委托的方法是在Control的线程上执行的,也就是我们平时所说的UI线程。
我们以代码(一)来看(Control的Invoke)
private delegate void InvokeDelegate();
private void InvokeMethod(){
//C代码段 private void butInvoke_Click(object sender, EventArgs e) {
//A代码段.......
this.Invoke(new InvokeDelegate(InvokeMethod));
//B代码段...... 你觉得代码的执行顺序是什么呢?记好Control的Invoke和BeginInvoke都执行在主线程即UI线程上
A------>C---------------->B
解释:(1)A在UI线程上执行完后,开始Invoke,Invoke是同步
(2)代码段B并不执行,而是立即在UI线程上执行InvokeMethod方法,即代码段C。
(3)InvokeMethod方法执行完后,代码段C才在UI线程上继续执行。
看看代码(二),Control的BeginInvoke
private delegate void BeginInvokeDelegate();
private void BeginInvokeMethod(){
//C代码段 private void butBeginInvoke_Click(object sender, EventArgs e) {
//A代码段.......
this.BeginInvoke(new BeginInvokeDelegate(BeginInvokeMethod));
//B代码段...... 你觉得代码的执行顺序是什么呢?记好Control的Invoke和BeginInvoke都执行在主线程即UI线程上
A----------->B--------------->C慎重,这个只做参考。。。。。,我也不肯定执行顺序,如果有哪位达人知道的话请告知。
解释::(1)A在UI线程上执行完后,开始BeginInvoke,BeginInvoke是异步
(2)InvokeMethod方法,即代码段C不会执行,而是立即在UI线程上执行代码段B。
(3) 代码段B执行完后(就是说butBeginInvoke_Click方法执行完后),InvokeMethod方法,即代码段C才在UI线程上继续执行。 Control的Invoke和BeginInvoke的委托方法是在主线程,即UI线程上执行的。也就是说如果你的委托方法用来取花费时间长的数据,然 后更新界面什么的,千万别在UI线程上调用Control.Invoke和 Control.BeginInvoke,因为这些是依然阻塞UI线程的,造成界面的假死。异步是指相对于调用BeginInvoke的线程异步,而不是 相对于UI线程异步,你在UI线程上调用BeginInvoke ,当然不行了。----摘自"Invoke和BeginInvoke的真正涵义"一文中的评论。
BeginInvoke的原理是将调用的方法Marshal成消息,然后调用Win32 API中的RegisterWindowMessage()向UI窗口发送消息。----摘自"Invoke和BeginInvoke的真正涵义"一文中的评论。
(二)我们用Thread来调用BeginInvoke和Invoke
我们开一个线程,让线程执行一些耗费时间的操作,然后再用Control.Invoke和Control.BeginInvoke回到用户UI线程,执行界面更新。
代码(三) Thread调用Control的Invoke
private Thread invokeThread;
private delegate void invokeDelegate();
private void StartMethod(){
//C代码段......
Control.Invoke(new invokeDelegate(invokeMethod));
//D代码段...... private void invokeMethod(){
//E代码段 private void butInvoke_Click(object sender, EventArgs e) {
//A代码段.......
invokeThread = new Thread(new ThreadStart(StartMethod));
invokeThread.Start();
//B代码段......
你觉得代码的执行顺序是什么呢?记好Control的Invoke和BeginInvoke都执行在主线程即UI线程上
A------> (Start一开始B和StartMethod的C就同时执行)---->(C执行完了,不管B有没有执行完,invokeThread把消息封送 (invoke)给UI线程,然后自己等待)---->UI线程处理完butInvoke_Click消息后,处理invokeThread封送过 来的消息,执行invokeMethod 方法,即代码段E,处理往后UI线程切换到invokeThread线程。
这个Control.Invoke是相对于invokeThread线程同步的,阻止了其运行。 1。UI执行A
2。UI开线程InvokeThread,B和C同时执行,B执行在线程UI上,C执行在线程invokeThread上。
3。invokeThread封送消息给UI,然后自己等待,UI处理完消息后,处理invokeThread封送的消息,即代码段E
4。UI执行完E后,转到线程invokeThread上,invokeThread线程执行代码段D
代码(四) Thread调用Control的BeginInvoke
private Thread beginInvokeThread;
private delegate void beginInvokeDelegate();
private void StartMethod(){
//C代码段......
Control.BeginInvoke(new beginInvokeDelegate(beginInvokeMethod));
//D代码段...... private void beginInvokeMethod(){
//E代码段 private void butBeginInvoke_Click(object sender, EventArgs e) {
//A代码段.......
beginInvokeThread = new Thread(new ThreadStart(StartMethod));
beginInvokeThread .Start();
//B代码段...... 你觉得代码的执行顺序是什么呢?记好Control的Invoke和BeginInvoke都执行在主线程即UI线程上
A 在UI线程上执行----->beginInvokeThread线程开始执行,UI继续执行代码段B,并发地invokeThread执行代码段 C-------------->不管UI有没有执行完代码段B,这时 beginInvokeThread线程把消息封送给UI,单自己并不等待,继续向下执行-------->UI处理完 butBeginInvoke_Click消息后,处理beginInvokeThread线程封送过来的消息。解释:
1。UI执行A
2。UI开线程beginInvokeThread,B和C同时执行,B执行在线程UI上,C执行在线程beginInvokeThread上。
3。beginInvokeThread封送消息给UI,然后自己继续执行代码D,UI处理完消息后,处理invokeThread封送的消息,即代码段E
有点疑问:如果UI先执行完毕,是不是有可能过了段时间beginInvokeThread才把消息封送给UI,然后UI才继续执行封送的消息E。如图浅绿的部分。
Control 的BeginInvoke是相对于调用它的线程,即beginInvokeThread相对是异步的。 (1)如果你想阻止调用线程,那么调用代码(三),代码段D删掉,C改为耗费长时间的操作,因为这个操作是在另外一个线程中做的。代码段E改为更新界面的 方法。
(2)如果你不想阻止调用线程,那么调用代码(四),代码段D删掉,C改为耗费长时间的操作,因为这个操作是在另外一个线程中做的。代码段E改为更新界面的方法。
http://www.huomo.cn/developer/article-1aa5.html
- 张小鱼 2010-10-22 09:09
为了让程序尽快响应用户操作,在开发Windows应用程序时经常会使用到线程。对于耗时的操作如果不使用线程将会是UI界面长时间处于停滞状态,这种情况是用户非常不愿意看到的,在这种情况下我们希望使用线程来解决这个问题。
下面是一个使用多线程操作界面UI的代码:
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.Threading;
namespacepublicpartialclasspublic ThreadForm()
{
InitializeComponent();
}
privatevoid btnThread_Click(object sender, EventArgs e)
{
Thread thread =new Thread(new ThreadStart(Run));
thread.Start();
}
privatevoidwhile (progressBar.Value < progressBar.Maximum)
{
progressBar.PerformStep();
}
}
}
}
程序的界面如下:
我 们的本意是点击“启动”按钮来启动模拟一个操作,在进度条中显示操作的总体进度。不过如果我们真的点击“启动”按钮会很失望,因为它会抛出一个 System.InvalidOperationException异常,异常描述就是“线程间操作无效: 从不是创建控件‘progressBar’的线程访问它。”
CheckForIllegalCrossThreadCalls属性
之所以 会出现这样的情况是因为在.NET中做了限制,不允许在调试环境下使用线程访问并非它自己创建的UI控件,这么做可能是怕在多线程环境下对界面控件进行操 作会出现不可预知的情况,如果开发者可以确认自己的代码操作界面不会出现问题,可以用比较简单的方法解决,那就是设置 CheckForIllegalCrossThreadCalls这个静态属性,它默认是true,如果将其设为false的话,以后在多线程环境下操作 界面也不会抛出异常了,我们上面的代码可以修改为:
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Threading;
namespacepublicpartialclasspublic ThreadForm()
{
InitializeComponent();
}
privatevoid btnThread_Click(object//指示是否对错误线程的调用,即是否允许在创建UI的线程之外访问线程
CheckForIllegalCrossThreadCalls =false=new Thread(new ThreadStart(Run));
thread.Start();
}
privatevoidwhile (progressBar.Value < progressBar.Maximum)
{
progressBar.PerformStep();
}
}
}
}
这样再执行程序就不会抛出异常了。
不过使用上面的代码我们可能还有些犯嘀咕,毕竟是不允许直接在线程中直接操作界面的,那么我们还可以用Invoke方法。
Invoke方法来操作界面
下面是一个例子:
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Threading;
namespacepublicpartialclass//定义delegate以便Invoke时使用
privatedelegatevoid SetProgressBarValue(int value);
public ThreadForm()
{
InitializeComponent();
}
privatevoid btnThread_Click(object sender, EventArgs e)
{
progressBar.Value =0;
//指示是否对错误线程的调用,即是否允许在创建UI的线程之外访问线程
//CheckForIllegalCrossThreadCalls = false;
Thread thread =new Thread(new ThreadStart(Run));
thread.Start();
}
//使用线程来直接设置进度条
privatevoidwhile (progressBar.Value < progressBar.Maximum)
{
progressBar.PerformStep();
}
}
privatevoid btnInvoke_Click(object sender, EventArgs e)
{
progressBar.Value =0=new Thread(new ThreadStart(RunWithInvoke));
thread.Start();
}
//使用Invoke方法来设置进度条
privatevoidint value = progressBar.Value;
while (value<//如果是跨线程调用
ifthis.Invoke(new SetProgressBarValue(SetProgressValue), value++else=++//跟SetProgressBarValue委托相匹配的方法
privatevoid SetProgressValue(int value)
{
progressBar.Value =
这个方法的功能跟上面的操作是一样的,只不过不需要设置CheckForIllegalCrossThreadCalls属性,而且还不会抛出异常,当然除了上面的方法之外,还可以使用BackgroundWorker类来完成同样的功能。
BackgroundWorker类操作界面
因为使用BackgroundWorker类操作UI界面的例子周公博客上已经有过例子,所以这里的例子代码注释比较简单,读者可以看周公以前的示例,这次所使用的代码示例如下:
using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Threading;
namespacepublicpartialclass//定义delegate以便Invoke时使用
privatedelegatevoid SetProgressBarValue(int value);
private BackgroundWorker worker;
public ThreadForm()
{
InitializeComponent();
}
privatevoid btnThread_Click(object sender, EventArgs e)
{
progressBar.Value =0;
//指示是否对错误线程的调用,即是否允许在创建UI的线程之外访问线程
//CheckForIllegalCrossThreadCalls = false;
Thread thread =new Thread(new ThreadStart(Run));
thread.Start();
}
//使用线程来直接设置进度条
privatevoidwhile (progressBar.Value < progressBar.Maximum)
{
progressBar.PerformStep();
}
}
privatevoid btnInvoke_Click(object sender, EventArgs e)
{
progressBar.Value =0=new Thread(new ThreadStart(RunWithInvoke));
thread.Start();
}
//使用Invoke方法来设置进度条
privatevoidint value = progressBar.Value;
while (value<//如果是跨线程调用
ifthis.Invoke(new SetProgressBarValue(SetProgressValue), value++else=++//跟SetProgressBarValue委托相匹配的方法
privatevoid SetProgressValue(int value)
{
progressBar.Value =privatevoid btnBackgroundWorker_Click(object sender, EventArgs e)
{
progressBar.Value =0=new BackgroundWorker();
worker.DoWork +=new DoWorkEventHandler(worker_DoWork);
//当工作进度发生变化时执行的事件处理方法
worker.ProgressChanged +=new ProgressChangedEventHandler(worker_ProgressChanged);
//当事件处理完毕后执行的方法
worker.RunWorkerCompleted +=new RunWorkerCompletedEventHandler(worker_RunWorkerCompleted);
worker.WorkerReportsProgress =true;//支持报告进度更新
worker.WorkerSupportsCancellation =false;//不支持异步取消
worker.RunWorkerAsync();//启动执行
btnBackgroundWorker.Enabled =false//当事件处理完毕后执行的方法
void worker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
btnBackgroundWorker.Enabled=true//当工作进度发生变化时执行的事件处理方法
void worker_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
//可以在这个方法中与界面进行通讯
progressBar.Value =//开始启动工作时执行的事件处理方法
void worker_DoWork(object sender, DoWorkEventArgs e)
{
int value = progressBar.Value;
while (value < progressBar.Maximum)
{
worker.ReportProgress(++value);//汇报进度
当然,除了BackgroundWorker可以完成上面的功能之外,利用System.Windows.Forms.Timer类也能完场上面的功能,代码如下: using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Linq;
using System.Text;
using System.Windows.Forms;
using System.Threading;
namespacepublicpartialclass//定义delegate以便Invoke时使用
privatedelegatevoid SetProgressBarValue(int value);
private BackgroundWorker worker;
public ThreadForm()
{
InitializeComponent();
}
privatevoid btnThread_Click(object sender, EventArgs e)
{
progressBar.Value =0;
//指示是否对错误线程的调用,即是否允许在创建UI的线程之外访问线程
//CheckForIllegalCrossThreadCalls = false;
Thread thread =new Thread(new ThreadStart(Run));
thread.Start();
}
//使用线程来直接设置进度条
privatevoidwhile (progressBar.Value < progressBar.Maximum)
{
progressBar.PerformStep();
}
}
privatevoid btnInvoke_Click(object sender, EventArgs e)
{
progressBar.Value =0=new Thread(new ThreadStart(RunWithInvoke));
thread.Start();
}
//使用Invoke方法来设置进度条
privatevoidint value = progressBar.Value;
while (value<//如果是跨线程调用
ifthis.Invoke(new SetProgressBarValue(SetProgressValue), value++else=++//跟SetProgressBarValue委托相匹配的方法
privatevoid SetProgressValue(int value)
{
progressBar.Value =privatevoid btnBackgroundWorker_Click(object sender, EventArgs e)
{
progressBar.Value =0=new BackgroundWorker();
worker.DoWork +=new DoWorkEventHandler(worker_DoWork);
//当工作进度发生变化时执行的事件处理方法
worker.ProgressChanged +=new ProgressChangedEventHandler(worker_ProgressChanged);
//当事件处理完毕后执行的方法
worker.RunWorkerCompleted +=new RunWorkerCompletedEventHandler(worker_RunWorkerCompleted);
worker.WorkerReportsProgress =true;//支持报告进度更新
worker.WorkerSupportsCancellation =false;//不支持异步取消
worker.RunWorkerAsync();//启动执行
btnBackgroundWorker.Enabled =false//当事件处理完毕后执行的方法
void worker_RunWorkerCompleted(object sender, RunWorkerCompletedEventArgs e)
{
btnBackgroundWorker.Enabled=true//当工作进度发生变化时执行的事件处理方法
void worker_ProgressChanged(object sender, ProgressChangedEventArgs e)
{
//可以在这个方法中与界面进行通讯
progressBar.Value =//开始启动工作时执行的事件处理方法
void worker_DoWork(object sender, DoWorkEventArgs e)
{
int value = progressBar.Value;
while (value < progressBar.Maximum)
{
worker.ReportProgress(++value);//汇报进度
//使用System.Windows.Forms.Timer来操作界面能
privatevoid btnTimer_Click(object sender, EventArgs e)
{
progressBar.Value =0;
//注意在.net中有多个命名空间下存在Timer类,为了便于区别,使用了带命名空间形式
System.Windows.Forms.Timer timer =new System.Windows.Forms.Timer();
timer.Interval =1+=new EventHandler(timer_Tick);
timer.Enabled =true//Timer中要定期执行的方法
void timer_Tick(objectint value = progressBar.Value;
if (value < progressBar.Maximum)
{
progressBar.Value = value+100
总结:本篇主要讲述了使用线程操作Windows应用程序界面的方法,这些方法在编写多线程的UI程序时可以参考。
http://www.csharpwin.com/csharpspace/10234r1033.shtml
- 张小鱼 2010-10-22 09:40
本文章是小弟的处女文章.以前只在园子里看文章.
正方开始
在工作中有一个项目由于写文件操作比较频繁
以前用的是同步写文件方式,有人提出要多线程写文件.
多线程写文件的任务分给别一个同事,
因别一个同事对多线程方面不太熟 我给他提供了下面这种试
后来看了一些资料 http://dev.yesky.com/135/3030135.shtml(多核时代对并发程序设计的探索)
总结了下面这句:
线程: 需要操作系统投入CPU资源来运行和调度
异步: 无须消耗CPU时间的操作 如 I/O操作不仅包括了直接的文件、网络的读写,还包括数据库操作、Web Service、HttpRequest以及.net Remoting等跨进程的调用。
目前还不能很确定 上面这句是否正确. 请指点.
根据上面那句话我的想法改变了,我认为用异步写文件比多线程更合适于是用了下面方式
来源:http://www.chenjiliang.com/Article/View.aspx?ArticleID=2295
- 张小鱼 2010-10-22 09:42
1、定义委托
// 执行任务的委托声明(解决长任务死假)
delegate void RunTaskDelegate(int seconds);
// 显示进度条的委托声明(跨线程调用控件)
delegate void ShowProgressDelegate(int totalStep, int currentStep);
2、定义方法
private void ShowProgress(int totalStep, int currentStep)
{
progressBar1.Maximum = totalStep;
progressBar1.Value = currentStep;
}
3、定义线程
private void RunTask(int seconds)
{
ShowProgressDelegate showProgress = new ShowProgressDelegate(ShowProgress);
for (int i = 0; i < seconds * 4; i++)
{
Thread.Sleep(250);
// 在基础窗口上调用显示进度条的委托
this.Invoke(showProgress, new object[] { seconds * 4, i + 1 });
}
}
4、执行
RunTaskDelegate runTask = new RunTaskDelegate(RunTask);
// 异步调用执行任务的委托
runTask.BeginInvoke(20, null, null);
- 张小鱼 2010-10-22 09:47
我只简单列举几种常用的方法,详细可参考.Net多线程总结(一)
一)使用Thread类
ThreadStart threadStart=new ThreadStart(Calculate);//通过ThreadStart委托告诉子线程讲执行什么方法,这里执行一个计算圆周长的方法
Thread thread=new Thread(threadStart);
thread.Start(); //启动新线程
public void Calculate(){
double Diameter=0.5;
Console.Write("The perimeter Of Circle with a Diameter of {0} is {1}"Diameter,Diameter*Math.PI);
}
二)使用Delegate.BeginInvoke
delegate double CalculateMethod(double Diameter); //申明一个委托,表明需要在子线程上执行的方法的函数签名
static CalculateMethod calcMethod = new CalculateMethod(Calculate);//把委托和具体的方法关联起来
static void Main(string[] args)
{
//此处开始异步执行,并且可以给出一个回调函数(如果不需要执行什么后续操作也可以不使用回调)
calcMethod.BeginInvoke(5, new AsyncCallback(TaskFinished), null);
Console.ReadLine();
}
//线程调用的函数,给出直径作为参数,计算周长
public static double Calculate(double Diameter)
{
return Diameter * Math.PI;
}
//线程完成之后回调的函数
public static void TaskFinished(IAsyncResult result)
{
double re = 0;
re = calcMethod.EndInvoke(result);
Console.WriteLine(re);
}
三)使用ThreadPool.QueueworkItem
WaitCallback w = new WaitCallback(Calculate);
//下面启动四个线程,计算四个直径下的圆周长
ThreadPool.QueueUserWorkItem(w, 1.0);
ThreadPool.QueueUserWorkItem(w, 2.0);
ThreadPool.QueueUserWorkItem(w, 3.0);
ThreadPool.QueueUserWorkItem(w, 4.0);
public static void Calculate(double Diameter)
{
return Diameter * Math.PI;
}
下面两条来自于http://www.cnblogs.com/tonyman/archive/2007/09/13/891912.html
受托管的线程与 Windows线程
必 须要了解,执行.NET应用的线程实际上仍然是Windows线程。但是,当某个线程被CLR所知时,我们将它称为受托管的线程。具体来说,由受托管的代 码创建出来的线程就是受托管的线程。如果一个线程由非托管的代码所创建,那么它就是非托管的线程。不过,一旦该线程执行了受托管的代码它就变成了受托管的 线程。
一个受托管的线程和非托管的线程的区别在于,CLR将创建一个System.Threading.Thread类的实例来代表并操作前者。在内部实现中,CLR将一个包含了所有受托管线程的列表保存在一个叫做ThreadStore地方。
CLR确保每一个受托管的线程在任意时刻都在一个AppDomain中执行,但是这并不代表一个线程将永远处在一个AppDomain中,它可以随着时间的推移转到其他的AppDomain中。
从安全的角度来看,一个受托管的线程的主用户与底层的非托管线程中的Windows主用户是无关的。
前台线程与后台线程
启 动了多个线程的程序在关闭的时候却出现了问题,如果程序退出的时候不关闭线程,那么线程就会一直的存在,但是大多启动的线程都是局部变量,不能一一的关 闭,如果调用Thread.CurrentThread.Abort()方法关闭主线程的话,就会出现ThreadAbortException 异常,因此这样不行。
后来找到了这个办法: Thread.IsBackground 设置线程为后台线程。
msdn对前台线程 和后台线程的解释:托管线程或者是后台线程,或者是前台线程。后台线程不会使托管执行环境处于活动状态,除此之外,后台线程与前台线程是一样的。一旦所有 前台线程在托管进程(其中 .exe 文件是托管程序集)中被停止,系统将停止所有后台线程并关闭。通过设置 Thread.IsBackground 属性,可以将一个线程指定为后台线程或前台线程。例如,通过将 Thread.IsBackground 设置为 true,就可以将线程指定为后台线程。同样,通过将 IsBackground 设置为 false,就可以将线程指定为前台线程。从非托管代码进入托管执行环境的所有线程都被标记为后台线程。通过创建并启动新的 Thread 对象而生成的所有线程都是前台线程。如果要创建希望用来侦听某些活动(如套接字连接)的前台线程,则应将 Thread.IsBackground 设置为 true,以便进程可以终止。
所以解决办法就是在主线程初始化的时候,设置:Thread.CurrentThread.IsBackground = true;
这样,主线程就是后台线程,在关闭主程序的时候就会关闭主线程,从而关闭所有线程。但是这样的话,就会强制关闭所有正在执行的线程,所以在关闭的时候要对线程工作的结果保存。
经常看到名为BeginXXX和EndXXX的方法,他们是做什么用的
这是.net的一个异步方法名称规范
.Net 在设计的时候为异步编程设计了一个异步编程模型(APM),这个模型不仅是使用.NET的开发人员使用,.Net内部也频繁用到,比如所有的Stream 就有BeginRead,EndRead,Socket,WebRequet,SqlCommand都运用到了这个模式,一般来讲,调用 BegionXXX的时候,一般会启动一个异步过程去执行一个操作,EndEnvoke可以接收这个异步操作的返回,当然如果异步操作在 EndEnvoke调用的时候还没有执行完成,EndInvoke会一直等待异步操作完成或者超时
.Net的异步编程模型(APM)一般包含BeginXXX,EndXXX,IAsyncResult这三个元素,BeginXXX方法都要返回一个IAsyncResult,而EndXXX都需要接收一个IAsyncResult作为参数,他们的函数签名模式如下
IAsyncResult BeginXXX(...);
<返回类型> EndXXX(IAsyncResult ar);
BeginXXX 和EndXXX中的XXX,一般都对应一个同步的方法,比如FileStream的Read方法是一个同步方法,相应的 BeginRead(),EndRead()就是他的异步版本,HttpRequest有GetResponse来同步接收一个响应,也提供了 BeginGetResponse和EndGetResponse这个异步版本,而IAsynResult是二者联系的纽带,只有把BeginXXX所返 回的IAsyncResult传给对应的EndXXX,EndXXX才知道需要去接收哪个BeginXXX发起的异步操作的返回值。
这个 模式在实际使用时稍显繁琐,虽然原则上我们可以随时调用EndInvoke来获得返回值,并且可以同步多个线程,但是大多数情况下当我们不需要同步很多线 程的时候使用回调是更好的选择,在这种情况下三个元素中的IAsynResult就显得多余,我们一不需要用其中的线程完结标志来判断线程是否成功完成 (回调的时候线程应该已经完成了),二不需要他来传递数据,因为数据可以写在任何变量里,并且回调时应该已经填充,所以可以看到微软在新的.Net Framework中已经加强了对回调事件的支持,这总模型下,典型的回调程序应该这样写
a.DoWork+=new SomeEventHandler(Caculate);
a.CallBack+=new SomeEventHandler(callback);
a.Run();
(注: 我上面讲的是普遍的用法,然而BeginXXX,EndXXX仅仅是一种模式,而对这个模式的实现完全取决于使用他的开发人员,具体实现的时候你可以使用 另外一个线程来实现异步,也可能使用硬件的支持来实现异步,甚至可能根本和异步没有关系(尽管几乎没有人会这样做)-----比如直接在Beginxxx 里直接输出一个"Helloworld",如果是这种极端的情况,那么上面说的一切都是废话,所以上面的探讨并不涉及内部实现,只是告诉大家微软的模式, 和框架中对这个模式的经典实现)
异步和多线程有什么关联
有一句话总结的很好:多线程是实现异步的一种手段和工具
我们通常把多线程和异步等同起来,实际是一种误解,在实际实现的时候,异步有许多种实现方法,我们可以用进程来做异步,或者使用纤程,或者硬件的一些特性,比如在实现异步IO的时候,可以有下面两个方案:
1)可以通过初始化一个子线程,然后在子线程里进行IO,而让主线程顺利往下执行,当子线程执行完毕就回调
2)也可以根本不使用新线程,而使用硬件的支持(现在许多硬件都有自己的处理器),来实现完全的异步,这是我们只需要将IO请求告知硬件驱动程序,然后迅速返回,然后等着硬件IO就绪通知我们就可以了
实 际上DotNet Framework里面就有这样的例子,当我们使用文件流的时候,如果制定文件流属性为同步,则使用BeginRead进行读取时,就是用一个子线程来调 用同步的Read方法,而如果指定其为异步,则同样操作时就使用了需要硬件和操作系统支持的所谓IOCP的机制
WinForm多线程编程篇
我的多线程WinForm程序老是抛出InvalidOperationException ,怎么解决?
在WinForm中使用多线程时,常常遇到一个问题,当在子线程(非UI线程)中修改一个控件的值:比如修改进度条进度,时会抛出如下错误
Cross-thread operation not valid: Control ‘XXX‘ accessed from a thread other than the thread it was created on.
在 VS2005或者更高版本中,只要不是在控件的创建线程(一般就是指UI主线程)上访问控件的属性就会抛出这个错误,解决方法就是利用控件提供的 Invoke和BeginInvoke把调用封送回UI线程,也就是让控件属性修改在UI线程上执行,下面列出会报错的代码和他的修改版本
ThreadStart threadStart=new ThreadStart(Calculate);//通过ThreadStart委托告诉子线程讲执行什么方法
Thread thread=new Thread(threadStart);
thread.Start();
public void Calculate(){
double Diameter=0.5;
double result=Diameter*Math.PI;
CalcFinished(result);//计算完成需要在一个文本框里显示
}
public void CalcFinished(double result){
this.TextBox1.Text=result.ToString();//会抛出错误
}
上面加粗的地方在debug的时候会报错,最直接的修改方法是修改Calculate这个方法如下
delegate void changeText(double result);
public void Calculate(){
double Diameter=0.5;
double result=Diameter*Math.PI;
this.BeginInvoke(new changeText(CalcFinished),t.Result);//计算完成需要在一个文本框里显示
}
这样就ok了,但是最漂亮的方法是不去修改Calculate,而去修改CalcFinished这个方法,因为程序里调用这个方法的地方可能很多,由于加了是否需要封送的判断,这样修改还能提高非跨线程调用时的性能
delegate void changeText(double result);
public void CalcFinished(double result){
if(this.InvokeRequired){
this.BeginInvoke(new changeText(CalcFinished),t.Result);
}
else{
this.TextBox1.Text=result.ToString();
}
}
上面的做法用到了Control的一个属性InvokeRequired(这个属性是可以在其他线程里访问的),这个属性表明调用是否来自另非UI线程,如果是,则使用BeginInvoke来调用这个函数,否则就直接调用,省去线程封送的过程
Invoke,BeginInvoke干什么用的,内部是怎么实现的?
这两个方法主要是让给出的方法在控件创建的线程上执行
Invoke使用了Win32API的SendMessage,
UnsafeNativeMethods.PostMessage(new HandleRef(this, this.Handle), threadCallbackMessage, IntPtr.Zero, IntPtr.Zero);
BeginInvoke使用了Win32API的PostMessage
UnsafeNativeMethods.PostMessage(new HandleRef(this, this.Handle), threadCallbackMessage, IntPtr.Zero, IntPtr.Zero);
这两个方法向UI线程的消息队列中放入一个消息,当UI线程处理这个消息时,就会在自己的上下文中执行传入的方法,换句话说凡是使用BeginInvoke和Invoke调用的线程都是在UI主线程中执行的,所以如果这些方法里涉及一些静态变量,不用考虑加锁的问题
每个线程都有消息队列吗?
不是,只有创建了窗体对象的线程才会有消息队列(下面给出<Windows 核心编程>关于这一段的描述)
当 一个线程第一次被建立时,系统假定线程不会被用于任何与用户相关的任务。这样可以减少线程对系统资源的要求。但是,一旦这个线程调用一个与图形用户界面有 关的函数(例如检查它的消息队列或建立一个窗口),系统就会为该线程分配一些另外的资源,以便它能够执行与用户界面有关的任务。特别是,系统分配一个T H R E A D I N F O结构,并将这个数据结构与线程联系起来。
这个T H R E A D I N F O结构包含一组成员变量,利用这组成员,线程可以认为它是在自己独占的环境中运行。T H R E A D I N F O是一个内部的、未公开的数据结构,用来指定线程的登记消息队列(posted-message queue)、发送消息队列( send-message queue)、应答消息队列( r e p l y -message queue)、虚拟输入队列(virtualized-input queue)、唤醒标志(wake flag)、以及用来描述线程局部输入状态的若干变量。图2 6 - 1描述了T H R E A D I N F O结构和与之相联系的三个线程。
为什么Winform不允许跨线程修改UI线程控件的值
在vs2003下,使用子线程调用ui线程创建的控件的属性是不会有问题的,但是编译的时候会出现警告,但是vs2005及以上版本就会有这样的问题,下面是msdn上的描述
" 当您在 Visual Studio 调试器中运行代码时,如果您从一个线程访问某个 UI 元素,而该线程不是创建该 UI 元素时所在的线程,则会引发 InvalidOperationException。调试器引发该异常以警告您存在危险的编程操作。UI 元素不是线程安全的,所以只应在创建它们的线程上进行访问"
从上面可以看出,这个异常实际是debugger耍的花招,也就是说,如果 你直接运行程序的exe文件,或者利用运行而不调试(Ctrl+F5)来运行你的程序,是不会抛出这样的异常的.大概ms发现v2003的警告对广大开发 者不起作用,所以用了一个比较狠一点的方法.
不过问题依然存在:既然这样设计的原因主要是因为控件的值非线程安全,那么DotNet framework中非线程安全的类千千万万,为什么偏偏跨线程修改Control的属性会有这样严格的限制策略呢?
这个问题我还回答不好,希望博友们能够予以补充
有没有什么办法可以简化WinForm多线程的开发
使用backgroundworker,使用这个组建可以避免回调时的Invoke和BeginInvoke,并且提供了许多丰富的方法和事件
参见.Net多线程总结(二)-BackgroundWorker,我在这里不再赘诉
线程池
线程池的作用是什么
作用是减小线程创建和销毁的开销
创建线程涉及用户模式和内核模式的切换,内存分配,dll通知等一系列过程,线程销毁的步骤也是开销很大的,所以如果应用程序使用了完一个线程,我们能把线程暂时存放起来,以备下次使用,就可以减小这些开销
所有进程使用一个共享的线程池,还是每个进程使用独立的线程池?
每 个进程都有一个线程池,一个Process中只能有一个实例,它在各个应用程序域(AppDomain)是共享的,.Net2.0 中默认线程池的大小为工作线程25个,IO线程1000个,有一个比较普遍的误解是线程池中会有1000个线程等着你去取,其实不然, ThreadPool仅仅保留相当少的线程,保留的线程可以用SetMinThread这个方法来设置,当程序的某个地方需要创建一个线程来完成工作时, 而线程池中又没有空闲线程时,线程池就会负责创建这个线程,并且在调用完毕后,不会立刻销毁,而是把他放在池子里,预备下次使用,同时如果线程超过一定时 间没有被使用,线程池将会回收线程,所以线程池里存在的线程数实际是个动态的过程
为什么不要手动线程池设置最大值?
当我首次看到线程池的时候,脑袋里的第一个念头就是给他设定一个最大值,然而当我们查看ThreadPool的SetMaxThreads文档时往往会看到一条警告:不要手动更改线程池的大小,这是为什么呢?
其 实无论FileStream的异步读写,异步发送接受Web请求,甚至使用delegate的beginInvoke都会默认调用 ThreadPool,也就是说不仅你的代码可能使用到线程池,框架内部也可能使用到,更改的后果影响就非常大,特别在iis中,一个应用程序池中的所有 WebApplication会共享一个线程池,对最大值的设定会带来很多意想不到的麻烦
线程池的线程为何要分类?
线 程池有一个方法可以让我们看到线程池中可用的线程数量:GetAvaliableThread(out workerThreadCount,out iocompletedThreadCount),对于我来说,第一次看到这个函数的参数时十分困惑,因为我期望这个函数直接返回一个整形,表明还剩多少 线程,这个函数居然一次返回了两个变量.
原来线程池里的线程按照公用被分成了两大类:工作线程和IO线程,或者IO完成线程,前者用于 执行普通的操作,后者专用于异步IO,比如文件和网络请求,注意,分类并不说明两种线程本身有差别,线程就是线程,是一种执行单元,从本质上来讲都是一样 的,线程池这样分类,举例来说,就好像某施工工地现在有1000把铁锹,规定其中25把给后勤部门用,其他都给施工部门,施工部门需要大量使用铁锹来挖地 基(例子土了点,不过说明问题还是有效的),后勤部门用铁锹也就是铲铲雪,铲铲垃圾,给工人师傅修修临时住房,所以用量不大,显然两个部门的铁锹本身没有 区别,但是这样的划分就为管理两个部门的铁锹提供了方便
线程池中两种线程分别在什么情况下被使用,二者工作原理有什么不同?
下面这个例子直接说明了二者的区别,我们用一个流读出一个很大的文件(大一点操作的时间长,便于观察),然后用另一个输出流把所读出的文件的一部分写到磁盘上
我们用两种方法创建输出流,分别是
创建了一个异步的流(注意构造函数最后那个true)
FileStream outputfs=new FileStream(writepath, FileMode.Create, FileAccess.Write, FileShare.None,256,true);
创建了一个同步的流
FileStream outputfs = File.OpenWrite(writepath);
然后在写文件期间查看线程池的状况
string readpath = "e:\\RHEL4-U4-i386-AS-disc1.iso";
string writepath = "e:\\kakakak.iso";
byte[] buffer = new byte[90000000];
//FileStream outputfs=new FileStream(writepath, FileMode.Create, FileAccess.Write, FileShare.None,256,true);
//Console.WriteLine("异步流");
//创建了一个同步的流
FileStream outputfs = File.OpenWrite(writepath);
Console.WriteLine("同步流");
//然后在写文件期间查看线程池的状况
ShowThreadDetail("初始状态");
FileStream fs = File.OpenRead(readpath);
fs.BeginRead(buffer, 0, 90000000, delegate(IAsyncResult o)
{
outputfs.BeginWrite(buffer, 0, buffer.Length,
delegate(IAsyncResult o1)
{
Thread.Sleep(1000);
ShowThreadDetail("BeginWrite的回调线程");
}, null);
Thread.Sleep(500);//this is important cause without this, this Thread and the one used for BeginRead May seem to be same one
},
null);
Console.ReadLine();
public static void ShowThreadDetail(string caller)
{
int IO;
int Worker;
ThreadPool.GetAvailableThreads(out Worker, out IO);
Console.WriteLine("Worker: {0}; IO: {1}", Worker, IO);
}
输出结果
异步流
Worker: 500; IO: 1000
Worker: 500; IO: 999
同步流
Worker: 500; IO: 1000
Worker: 499; IO: 1000
这两个构造函数创建的流都可以使用BeginWrite来异步写数据,但是二者行为不同,当使用同步的流进行异步写时,通过回调的输出我们可以看到,他使用的是工作线程,而非IO线程,而异步流使用了IO线程而非工作线程
其 实当没有制定异步属性的时候,.Net实现异步IO是用一个子线程调用fs的同步Write方法来实现的,这时这个子线程会一直阻塞直到调用完成.这个子 线程其实就是线程池的一个工作线程,所以我们可以看到,同步流的异步写回调中输出的工作线程数少了一,而使用异步流,在进行异步写时,采用了 IOCP方法,简单说来,就是当BeginWrite执行时,把信息传给硬件驱动程序,然后立即往下执行(注意这里没有额外的线程),而当硬件准备就绪, 就会通知线程池,使用一个IO线程来读取
.Net线程池有什么不足
没有提供方法控制加入线程池的线程:一旦加入线程池,我们没有办法挂起,终止这些线程,唯一可以做的就是等他自己执行
1)不能为线程设置优先级
2) 一个Process中只能有一个实例,它在各个AppDomain是共享的。ThreadPool只提供了静态方法,不仅我们自己添加进去的 WorkItem使用这个Pool,而且.net framework中那些BeginXXX、EndXXX之类的方法都会使用此Pool。
3)所支持的Callback不能有返回值。WaitCallback只能带一个object类型的参数,没有任何返回值。
4)不适合用在长期执行某任务的场合。我们常常需要做一个Service来提供不间断的服务(除非服务器down掉),但是使用ThreadPool并不合适。
下面是另外一个网友总结的什么不需要使用线程池,我觉得挺好,引用下来
如果您需要使一个任务具有特定的优先级。
如果您具有可能会长时间运行(并因此阻塞其他任务)的任务。
如果您需要将线程放置到单线程单元中(所有 ThreadPool 线程均处于多线程单元中)。
如果您需要与该线程关联的稳定标识。例如,您应使用一个专用线程来中止该线程、将其挂起或按名称发现它。
锁定与同步
CLR怎样实现lock(obj)锁定?
从原理上讲,lock和Syncronized Attribute都是用Moniter.Enter实现的,比如如下代码
object lockobj=new object();
lock(obj){
//do things
}
在编译时,会被编译为类似
try{
Moniter.Enter(obj){
//do things
}
}
catch{}
finally{
Moniter.Exit(obj);
}
而[MethodImpl(MethodImplOptions.Synchronized)]标记为同步的方法会在编译时被lock(this)语句所环绕
所以我们只简单探讨Moniter.Enter的实现
(注:DotNet并非使用Win32API的CriticalSection来实现Moniter.Enter,不过他为托管对象提供了一个类似的结构叫做Syncblk)
每 个对象实例头部都有一个指针,这个指针指向的结构,包含了对象的锁定信息,当第一次使用Moniter.Enter(obj)时,这个obj对象的锁定结 构就会被初时化,第二次调用Moniter.Enter时,会检验这个object的锁定结构,如果锁没有被释放,则调用会阻塞
WaitHandle是什么,他和他的派生类怎么使用
WaitHandle是Mutex,Semaphore,EventWaitHandler,AutoResetEvent,ManualResetEvent共同的祖先,他们包装了用于同步的内核对象,也就是说是这些内核对象的托管版本。
Mutex:类似于一个接力棒,拿到接力棒的线程才可以开始跑,当然接力棒一次只属于一个线程(Thread Affinity),如果这个线程不释放接力棒(Mutex.ReleaseMutex),那么没办法,其他所有需要接力棒运行的线程都知道能等着看热闹
Semaphore: 类似于一个小桶,里面装了几个小球,凡是拿到小球就可以跑,比如指定小桶里最初有四个小球,那么开始的四个线程就可以直接拿着自己的小球开跑,但是第五个 线程一看,小球被拿光了,就只好乖乖的等着有谁放一个小球到小桶里(Semophore.Release),他才能跑,但是这里的游戏规则比较特殊,我们 可以随意向小桶里放入小球,也就是说我可以拿走一个小球,放回去俩,甚至一个都不拿,放回去5个,这样就有五个线程可以拿着这些小球运行了.我们可以规定 小桶里有开始有几个小球(构造函数的第一个参数),也可以规定最多不能超过多少小球(构造函数的第二个参数)
ManualResetEvent,AutoResetEvent可以参考http://www.cnblogs.com/uubox/archive/2007/12/18/1003953.html
什么是用双锁实现Singleton,为什么要这样做,双锁检验是不安全的吗?
使用双锁检验技巧来实现单件,来自于Java社区
public static MySingleton Instance{
get{
if(_instance!=null)}{
lock(_instance){
if(s_value==null){
_instance= new MySingleton();
}
}
}
}
}
这样做其实是为了提高效率,比起
public static MySingleton Instance{
get{
lock(_instance){
if(s_value==null){
_instance= new MySingleton();
}
}
前一种方法在instance创建的时候不需要用lock同步,从而增进了效率
在java中这种技巧被证明是不安全的详细见http://www.cs.umd.edu/~pugh/java/memoryModel/
但是在.Net下,这样的技巧是成立的,因为.Net使用了改进的内存模型
并且在.Net下,我们可以使用LazyInit来实现单件
private static readonly _instance=new MySingleton()
public static MySingleton Instance{
get{return _instance}
}
当第一此使用_instance时,CLR会生成这个对象,以后再访问这个字段,将会直接返回
互斥对象(Mutex),信号量(Semaphore),事件(Event)对象与lock语句的比较
首先这里所谓的事件对象不是System.Event,而是一种用于同步的内核机制
互斥对象和事件对象属于内核对象,利用内核对象进行线程同步,线程必须要在用户模式和内核模式间切换,所以一般效率很低,但利用互斥对象和事件对象这样的内核对象,可以在多个进程中的各个线程间进行同步。
lock或者Moniter是.net用一个特殊结构实现的,不涉及模式切换,也就是说工作在用户方式下,同步速度较快,但是不能跨进程同步
什么时候需要锁定?
刚刚接触锁定的程序员往往觉得这个世界非常的危险,每个静态变量似乎都有可能产生竞争
首先锁定是解决竞争条件的,也就是多个线程同时访问某个资源,造成意想不到的结果,比如,最简单的情况,一个计数器,如果两个线程同时加一,后果就是损失了一个计数,但是频繁的锁定又可能带来性能上的消耗,还有最可怕的情况,死锁
到底什么情况下我们需要使用锁,什么情况下不用呢?
只有共享资源才需要锁定
首先,只有可以被多线程访问的共享资源才需要考虑锁定,比如静态变量,再比如某些缓存中的值,属于线程内部的变量不需要锁定
把锁定交给数据库
数据库除了存储数据之外,还有一个重要的用途就是同步,数据库本身用了一套复杂的机制来保证数据的可靠和一致性,这就为我们节省了很多的精力.保证了数据源头上的同步,我们多数的精力就可以集中在缓存等其他一些资源的同步访问上了
了解你的程序是怎么运行的
实 际上在web开发中大多数逻辑都是在单个线程中展开的,无论asp.net还是php,一个请求都会在一个单独的线程中处理,其中的大部分变量都是属于这 个线程的,根本没有必要考虑锁定,当然对于asp.net中的application对象中的数据,我们就要小心一些了
WinForm中凡是使用BeginInvoke和Invoke调用的方法也都不需要考虑同步,因为这用这两个方法调用的方法会在UI线程中执行,因此实际是同步的,所以如果调用的方法中存在某些静态变量,不需要考虑锁定
业务逻辑对事务和线程安全的要求
这 条是最根本的东西,开发完全线程安全的程序是件很费时费力的事情,在电子商务等涉及金融系统的案例中,许多逻辑都必须严格的线程安全,所以我们不得不牺牲 一些性能,和很多的开发时间来做这方面的工作,而一般的应用中,许多情况下虽然程序有竞争的危险,我们还是可以不使用锁定,比如有的时候计数器少一多一, 对结果无伤大雅的情况下,我们就可以不用去管他
计算一下冲突的可能性
我以前曾经谈到过,架构不要过设计,其实在这里也一样,假 如你的全局缓存里的某个值每天只有几百或者几千个访问,并且访问时间很短,并且分布均匀(实际上这是大多数的情况),那么冲突的可能性就非常的少,也许每 500天才会出现一次或者更长,从7*24小时安全服务的角度来看,也完全符合要求,那么你还会为这样万分之一的可能性花80%的精力去设计吗?
请多使用lock,少用Mutex
如 果你一定要使用锁定,请尽量不要使用内核模块的锁定机制,比如.net的 Mutex,Semaphore,AutoResetEvent,ManuResetEvent,使用这样的机制涉及到了系统在用户模式和内核模式间的切 换,所以性能差很多,但是他们的优点是可以跨进程同步线程,所以应该清楚的了解到他们的不同和适用范围
Web和IIS
应用程序池,WebApplication,和线程池之间有什么关系
一个应用程序池是一个独立的进程,拥有一个线程池,应用程序池中可以有多个WebApplication,每个运行在一个单独的AppDomain中,这些WebApplication公用一个线程池
不同的AppDomain保证了每个WebApplication的静态变量不会互相干扰,不同的应用程序池保证了一个网站瘫痪,其他不同进程中的站点还能正常运行
下图说明了他们的关系
Web页面怎么调用异步WebService
把Page的Async属性设置为true,就可以调用异步的方法,但是这样调用的效果可能并不如我们的相像,请参考Web中使用多线程来增强用户体验
- 张小鱼 2010-10-22 09:48
不需要传递参数,也不需要返回参数
我们知道启动一个线程最直观的办法是使用Thread类,具体步骤如下
ThreadStart threadStart=new ThreadStart(Calculate);
Thread thread=new Thread(threadStart);
thread.Start();
public void Calculate(){
double Diameter=0.5;
Console.Write("The perimeter Of Circle with a Diameter of {0} is {1}"Diameter,Diameter*Math.PI);
}
例1
上 面我们用定义了一个ThreadStart类型的委托,这个委托制定了线程需要执行的方法:Calculate,在这个方法里计算了一个直径为0.5的圆 的周长,并输出.这就构成了最简单的多线程的例子,在很多情况下这就够用了,然后ThreadStart这个委托定义为void ThreadStart(),也就是说,所执行的方法不能有参数,这显然是个很大的不足,为了弥补这个缺陷,聪明的程序员想出了许多好的方法,我们将在需 要传递多个参数一节中进行介绍,这里我们先介绍.Net为了解决这个问题而设定的另外一个委托:就是ParameterizedThreadStart ,我会在下面详细讲述
需要传递单个参数
ParameterThreadStart的定义为void ParameterizedThreadStart(object state)??使用这个这个委托定义的线程的启动函数可以接受一个输入参数,具体例子如下
ParameterizedThreadStart threadStart=new ParameterizedThreadStart(Calculate)
Thread thread=new Thread()
thread.Start(0.9);
public void Calculate(object arg){
double Diameter=double(arg);
Console.Write("The perimeter Of Circle with a Diameter of {0} is {1}"Diameter,Diameter*Math.PI);
}
例2
Calculate方法有一个为object类型的参数,虽然只有一个参数,而且还是object类型的,使用的时候尚需要类型转换,但是好在可以有参数了,并且通过把多个参数组合到一个类中,然后把这个类的实例作为参数传递,就可以实现多个参数传递
需要传递多个参数
虽然通过把需要的参数包装到一个类中,委托ParameterizedThreadStart就可以传递多个参数,但是由于这个委托的传入参数是object,所以不可避免的需要进行参数转换,下面还有几个常用的参数传递方法,让我们来一一看来
使用专门的线程类
这 是许多程序员爱使用的经典模式,简单来说,就是把需要另起线程执行的方法,和他需要的参数放到一个类中,参数作为了类的属性,调用时声明此类的实例,然后 初始化属性,方法执行时直接使用类里初始化好的属性来执行,这样方法本身就可以不需要参数,而又起到了多参数传递的效果,于是使用本文最开始提到的不带参 数的ThreadStart委托就可以了,并且由于需要执行的方法和参数都放在一个类中,充分体现了面向对象的特点.具体方法如下
还是计算面积的方法的例子,我们把这个方法用一个类包装起来,输入参数Diameter(直径)是这个类的一个字段
public class MyThread
{
public double Diameter=10;
public double Result=0;
public MyThread(int Diameter)
{
this.Diameter = Diameter;
}
public void Calculate()
{
Console.WriteLine( "Calculate Start");
Thread.Sleep(2000);
Result = Diameter*Math.PI;;
Console.WriteLine("Calculate End, Diameter is {0},Result is {1}" ,this.Diameter, Result);
}
}
MyThread t=new MyThread(5.0);
ThreadStart threadStart=new ThreadStart(t.Calculate)
Thread thread=new Thread(threadStart);
thread.Start();
例3
这种方法把参数传递变成了属性共享,想传递多少个变量都可以,从封装上讲,把逻辑和逻辑涉及的数据封装在一起,也很不错,这个方法还有一个聪明的变体,利用了匿名方法,这种变体连独立的类都省掉了,我现在给出这个方法
double Diameter = 6;
double Result=0;
Thread ta = new Thread(new ThreadStart(delegate()
{
Thread.Sleep(2000);
Result=Diameter * Math.PI;
Console.WriteLine("匿名 Calculate End, Diameter is {0},Result is {1}", Diameter, Result); ;
}));
ta.Start();
例4
这 个方法和上例道理相同,都是把参数传递变成了对变量的调用,从而取消了参数传递,但是,后者充分利用了匿名方法的一个性质,就是可以直接使用当前上下文的 局部变量,比如委托中的Diameter,和Result.当然,这样做的缺点是如果匿名方法太长,程序的可读性会降低,所以一般很少有人这样做,这里给 出这个方法供大家参考,关于匿名委托的资料可以参见
聪明的读者肯定想,既然可以用字段来传入变量,当然也可以用字段传出变量,比如在上面两个例子里我们看到计算结果都写进了一个叫Result(加亮的地方)的变量里,我们直接访问这个变量不就可以得到计算结果了吗?
这样做有一个致命的问题:既然是异步执行,主线程怎么知道分线程什么时候完成了计算呢?比如上两个例子中,我们的线程都睡眠了2000毫秒,然后才进行计算,那么如果主线程在没有完成计算前访问Result,只能得到一个0值.于是我们就有了下面的一系列解决方法.
需要传递参数且需要返回参数
刚才说到主线程需要知道子线程什么时候执行完成,可以使用Thread.ThreadState枚举来判断
当 线程的ThreadState==ThreadState.Stop时,一般就说明线程完成了工作,这时结果就可用了,如果不是这个状态,就继续执行别的 工作,或者等待一会,然后再尝试.倘若需要等有多个子线程需的返回,并且需要用他们的结果来进行进异步计算,那就叫做线程同步了,下面我们介绍另外一种我 比较推荐的方法,能够自定义参数个数,并且返回数据,而且使用起来也相对方便
使用委托的异步调用方法和回调
首先我们要把需要异步调用的方法定义为一个委托,然后利用BeginInvoke来异步调用,BeginInvoke的第一个参数就是直径,第二个是当线程执行完毕后的调用的方法
delegate double CalculateMethod(double Diameter);
static CalculateMethod calcMethod;
double result = 0;
static void Main(string[] args)
{
calcMethod = new CalculateMethod(Calculate);
calcMethod.BeginInvoke(5, new AsyncCallback(TaskFinished), null);
}
///<summary>
///线程调用的函数
///<summary>
public static double Calculate(double Diameter)
{
return Diameter * Math.PI;
}
///<summary>
///线程完成之后回调的函数
///<summary>
public static void TaskFinished(IAsyncResult result)
{
result=calcMethod.EndInvoke(result);
}
例5
注意,再线程执行完毕后执行的方法TaskFinished中,我们使用了EndInvoke来取得这个函数的返回值
线程池
线程虽然是个好东西,但是也是个资源消耗大户,许多时候,我们需要用多线程,但是又不希望线程的数量过多,这就是线程池的作用,.Net为我们提供了现成的线程池ThreadPool,他的使用如下
WaitCallback w = new WaitCallback(Calculate);
ThreadPool.QueueUserWorkItem(w, 1.0);
ThreadPool.QueueUserWorkItem(w, 2.0);
ThreadPool.QueueUserWorkItem(w, 3.0);
ThreadPool.QueueUserWorkItem(w, 4.0);
public static void Calculate(double Diameter)
{
return Diameter * Math.PI;
}
例6
首 先定义一个WaitCallback委托,WaitCallback的格式是void WaitCallback(object state),也就是说你的方法必须符合这个格式,接着调用QueueUserWorkItem,将这个任务加入线程池,当县城池有空闲线时,将会调度并 运行你的代码
每一个进程都有一个线程池,线程池的默认大小是25,我们可以通过SetMaxThreads方法来设置其最大值.
[注]由于每个进程只有一个线程池,所以如果是在iis进程,或者sqlserver的进程中使用线程池,并且需要设置线程池的最大容量的话,会影响到iis进程或sql进程,所以这两种情况下要特别小心
控制权
在 和大家交谈的时候我发现凡是习惯了面向对象思维的同事,总是对多线程情况下的执行上下文很困扰,比如例5中,主程序启动了子线程执行Calculate方 法,执行完毕后回调TaskFinished,假如主线程id是1,子线程id是2,那么Calculate肯定是在id=2的线程中执行,那么他的回调 函数TaskFinished呢? 同样也是在id=2的线程上下文中执行,不信你输出线程id试试,这通常不是什么问题,但是当我们需要在Winform编程中使用子线程时,就有可能会引 起问题了,我们将在下面讲这个问题
窗体程序多线程编程的特殊性
当我们把例5的回调代码稍加修改,搬到winform里面,就可以看到问题所在了
public static void TaskFinished(IAsyncResult result)
{
result=calcMethod.EndInvoke(result);
this.TextBox1.Text=result;
}
程 序的原意是在线程执行完毕后讲结果写入一个TextBox,然而当程序执行到this.TextBox1.Text=result这里的时候就抱错了.原 来WinForm对线程有很严格的要求,除了创建这些控件的线程,其他线程想跨线程访问WinForm上的控件的属性和方法是不允许(除了几个特殊属 性),在有的版本系统上,比如XP,对这个问题进行了处理,跨线程控件访问可以被执行,但是大多数windows系统都是不可以的,那么如果我们确实需要 跨线程修改控件属性,或者调用控件的方法,就必须用到控件的一个方法Invoke,这个方法可以把执行上下文切换回创建这些控件的线程,具体操作如下
delegate void changeText(string result);
public static void TaskFinished(IAsyncResult result)
{
result=calcMethod.EndInvoke(result);
this.BeginInvoke(new changeText(this.textBox1.AppendText),t.Result.ToString())
}
由于委托中必须使用方法,所以我用AppendTex方法t,而不是直接设置Text属性,你如果想设置text属性,就必须自己包装一个方法,然后连接到委托了
C#多线程操作界面控件的解决方案(转)的更多相关文章
- 扩展BindingList,防止增加、删除项时自动更新界面而不出现“跨线程操作界面控件 corss thread operation”异常
在做界面程序时,常常需要一些数据类,界面元素通过绑定等方式显示出数据,然而由于UI线程不是线程安全的,一般都需要通过Invoke等方式来调用界面控件.但对于数据绑定bindingList而言,没法响应 ...
- [转] c#中 多线程访问winform控件
原文 c#中多线程访问winform控件的若干问题小结 我们在做winform应用的时候,大部分情况下都会碰到使用多线程控制界面上控件信息的问题.然而我们并不能用传统方法来解决这个问题,下面我将详细的 ...
- InvokeHelper,让跨线程访问/修改主界面控件不再麻烦(转)
http://bbs.csdn.net/topics/390162519 事实上,本文内容很简单且浅显,所以取消前戏,直接开始.. 源代码:在本文最后 这里是一张动画,演示在多线程(无限循环+Thre ...
- 解析大型.NET ERP系统 灵活复杂的界面控件Infragistics WinForms
Infragistics 是.NET平台优秀的控件供应商,囊括了WinForms,ASP.NET,Silverlight,WPF,Windows Phone等所有关于微软.NET技术的界面控件.借助于 ...
- 基于MVC4+EasyUI的Web开发框架形成之旅--界面控件的使用
在前面介绍了两篇关于我的基于MVC4+EasyUI技术的Web开发框架的随笔,本篇继续介绍其中界面部分的一些使用知识,包括控件的赋值.取值.清空,以及相关的使用. 我们知道,一般Web界面包括的界面控 ...
- 转--基于MVC4+EasyUI的Web开发框架形成之旅--界面控件的使用
原文 http://www.cnblogs.com/wuhuacong/p/3317223.html 基于MVC4+EasyUI的Web开发框架形成之旅--界面控件的使用 在前面介绍了两篇关于我的基 ...
- Qt中如果通过QStyle自定义能够跨平台的界面控件
我们经常会碰到需要定制界面控件的要求.如果只是在一个平台上,比如说你的控件只需要在Windows上显示,那很好办,Hard code 你的look and feel就可以了.但是如果界面需要在不同平台 ...
- C# Winform 跨线程更新UI控件常用方法汇总(多线程访问UI控件)
概述 C#Winform编程中,跨线程直接更新UI控件的做法是不正确的,会时常出现“线程间操作无效: 从不是创建控件的线程访问它”的异常.处理跨线程更新Winform UI控件常用的方法有4种:1. ...
- WinForm 简易仿360界面控件
因为经常要做一些1.2千行的小工具,WinForm自带的TabCtrl又不美观,所以想做成360的样子,在网上找来找去,都只有散乱的代码,没有可以通用的结构,于是自己写了一个简易的通用控件. 控件主要 ...
随机推荐
- WPF ItemsControl ListBox ListView比较
在进行列表信息展示时,WPF中提供多种列表可供选择.这篇博客将对WPF ItemsControl, ListBox, ListView进行比较. 相同点: 1. 这三个控件都是列表型控件,可以进行列表 ...
- ImageSwitcher自定意效果+定时切换图片
Activity实现 1 import android.app.Activity; import android.os.Bundle; import android.view.MotionEvent; ...
- hdu 4278 2012天津赛区网络赛 数学 *
8进制转为10进制 #include<cstdio> #include<iostream> #include<algorithm> #include<cstr ...
- 跟着鸟哥学Linux系列笔记0-扫盲之概念
相关缩写全称: POSIX(Portable Operation System Interface):可携式操作系统接口,重点在于规范内核与应用之间的接口,由IEEE定义发布 IEEE: 美国电气与电 ...
- (四)WebRTC手记之本地音频采集
转自:http://www.cnblogs.com/fangkm/p/4374668.html 上一篇博文介绍了本地视频采集,这一篇就介绍下音频采集流程,也是先介绍WebRTC原生的音频采集,再介绍C ...
- Spring容器初始化过程
一.Spring 容器高层视图 Spring 启动时读取应用程序提供的Bean配置信息,并在Spring容器中生成一份相应的Bean配置注册表,然后根据这张注册表实例化Bean,装配号Bean之间的依 ...
- cocos2dx游戏开发——微信打飞机学习笔记(三)——WelcomeScene的搭建
一.场景与层的关系: cocos2dx的框架可以说主要由导演,场景,层,精灵来构成: 1.其中导演,意如其名,就是操控整个游戏的一个单例,管理着整个游戏. 2.场景就像电影的一幕剧情,所以说,懂得如何 ...
- Android之Inflate()
Inflate()作用就是将xml定义的一个布局找出来,但仅仅是找出来而且隐藏的,没有找到的同时并显示功能.最近做的一个项目就是这一点让我迷茫了好几天. Android上还有一个与Inflate( ...
- JMeter处理jdbc请求后的响应结果
JMeter如果进行JDBC请求,请求后的响应结果如何给下一个请求用(也就是传说中的关联),于是研究了一下,下面将学习的成果做个记录: 1.添加 "JDBC Connection Confi ...
- loadrunner通过C语言实现自定义字符出现次数截取对应字符串
void lr_custom_string_delim_save(char inputStr[500], char* outputStr, char *delim, int occrNo, int s ...